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1

1. Introduction

1.1. Motivation

Syntactic parsing lies at the foundation of many natural-language processing applications. The
term denotes the automatic extraction of a syntactic representation from a natural language text,
usually in the form of a sequence of words and punctuation marks. The representation is designed
to capture information about the elements’ grammatical relations and functions. This output
is traditionally used as a basis for higher-level tasks like grammar checking, semantic analysis,
question answering and information extraction (Jurafsky and Martin, 2009, chapter 12).

One widely used description of syntax is so-called constituent structure. Rooted in X-bar theory
(Chomsky, 1970)1, the idea of constituency arises from the observation that groups of words can
behave as single units (Jurafsky and Martin, 2009, chapter 12). Take for instance the noun phrases
in (1.1).

(1.1) a. the memory

b. a new computer

c. the person she really likes

Despite having completely different meanings, these three terms can occur in similar syntactic
environments, for example before a verb as in (1.2).

(1.2) a. the memory fades

b. a new computer arrives...

c. the person she really likes waits...

However, this is not true for all of the individual components of the phrases, as can be seen in
(1.3). Therefore, one assumes the existence of an abstract category called a constituent to which
one or more words can belong and for which rules like “noun phrases can be followed by verbs”
can be postulated (Jurafsky and Martin, 2009, chapter 12).

(1.3) a. *the fades

b. *new arrives...

c. *likes spends...

Note: The asterisk marks constructions that are not grammatical.

Traditional views of constituency demand that constituents consist of adjacent words. This is
rooted in a system for modelling languages called context-free grammar (CFG) (Chomsky, 1956), a
generative device that derives sentences by using rewrite rules, starting with an initial symbol. The
derivation path marks a hierarchy of constituents that can be arranged into a derivation/parse tree.
Figure 1.1 gives an example for such a description. Note that the tree only contains non-crossing
edges which is why it is called projective or continuous.

This view of constituency was adopted by many treebanks. Treebanks are linguistic corpora
in which the sentences have been annotated with syntactic representations (e.g. constituency
trees) (Jurafsky and Martin, 2009, chapter 12). However, this leads to difficulties when analysing
syntactic phenomena that are believed to exhibit non-local dependencies. While the analysis
of German or other languages with varying degrees of free word order evidently questions the

1Please refer to Kornai and Pullum (1990) for a critical reflection on Chomsky’s ideas.
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Sentence

NP

the man

VP

Verb

took

NP

the book

Figure 1.1: Projective derivation tree for the man took the book (Chomsky, 1956).

projective approach, the English language also exhibits a fair amount of discontinuous phenomena,
see (1.4) and (1.5).

(1.4) a. sie
she

packte
packed

ihre
her

Werkzeuge
tools

ein
up

’she packed her tools’

b. den
the

Dank
thanks

möchte
want

er
he

nicht
not

annehmen
accept

’he does not want to accept the thanks’

c. ohne
without

Scham
shame

scheinen
seem

sie
they

das
the

komplette
complete

Buffet
buffet

aufgegessen
eaten

zu
to

haben
have

’they seem to have eaten the entire buffet without shame’

(1.5) a. areas of the factory were particularly dusty where the crocidolite was used (Evang, 2011)

b. a man entered who was wearing a black suit (McCawley, 1982)

Some treebanks like the English Penn Treebank (Marcus et al., 1993) opted to mark discon-
tinuous phenomena through indexing and trace nodes, i.e. empty nodes in the place where a
discontinuous subsection of the sentence would be expected in “standard” word order. This is
motivated by the tradition of analysing discontinuities as instances of transformation or syntac-
tic movement as introduced by Chomsky (1975). The tree in figure 1.2 features three cases of
co-indexing. While such a strategy acknowledges the existence of discontinuous relationships, the
long-range dependencies of the markers cannot be fully captured by traditional parsing techniques
for projective grammars and often remain unused.

S

NP

NP

NNS

Areas

PP

IN

of

NP

DT

the

NN

factory

SBAR

-None-

*ICH*-2

VP

VBD

were

ADJP

RB

particularly

JJ

dusty

SBAR-2

WHADVP-1

WRB

where

S

NP-8

DT

the

NN

crocidolite

VP

VBD

was

VP

VBN

used

NP

-None-

*-8

ADVP

-None-

*T*-1

Figure 1.2: A tree from Penn Treebank, without arc-labels, adopted from Evang (2011).

In a number of treebanks like the German NeGra (Skut et al., 1998) and TIGER treebanks
(Brants et al., 2004) or English discontinuous Penn Treebank (DPTB) (Evang and Kallmeyer, 2011)
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long-range dependencies are represented by crossing edges and constituents with non-adjacent
elements. The resulting trees are called discontinuous constituent trees. Figure 1.3 shows an
example from the NeGra corpus.

S

PROAV

Darüber

VMFIN

muß

VP

VP

VVP

nachgedacht

VAINF

werden

Figure 1.3: A tree from NeGra corpus, without arc-labels (Kallmeyer, 2010, chapter 6).

In order to capture syntactic descriptions with discontinuous constituents, several formalisms
have been proposed. Among these linear context-free rewriting systems (LCFRS) (Vijay-Shanker
et al., 1987) have been shown to be a natural candidate for accurately covering the notion of
discontinuous constituents employed by the aforementioned treebanks.

Being a foundation for many natural language processing tasks, parsing speed is a key concern
and a driver of active research. Parsing LCFRS is non-trivial in terms of efficiency. The adaptation
of traditional chart parsing for LCFRS results in a polynomial time complexity of O(n3·dim(G))
where n is the length of a sentence and dim(G) is the maximal number of discontinuous blocks of
a constituent in the grammar. Transition-based parsing approaches aim at reducing this factor by
doing away with the need for an explicit grammar. Instead, an artificial neural network is trained
to produce discontinuous constituent trees given only raw text input using supervised learning on
large annotated corpora. Errors in prediction are backpropagated through the network resulting
in optimisations of its parameters. In this way, it implicitly learns to identify regularities that it
can effectively use to predict trees for unseen data. A recent and elegant proposal for a neural
stack-free transition-based parser developed by Coavoux and Cohen (2019) successfully allows for
the derivation of any discontinuous constituent tree over a sentence in worst-case quadratic time.

1.2. Thesis Aims

The purpose of this work is to explore the possibility of enhancing the accuracy of neural grammar-
less discontinuous constituent parsing by introducing supertag information. In so-called lexicalised
grammar formalisms like lexicalised tree adjoining grammars (LTAG) (Schabes and Joshi, 1991)
and combinatory categorial grammar (CCG) (Steedman, 1989, 1996, 2000) informative categories
are assigned to words in a sentence that act as the sole building blocks in the composition of the
sentence’s overarching syntactic representation. These categories are called supertags. The set of
rules for connecting these building blocks is kept minimal. Therefore, a supertag assignment gives
strong information about the structural role of the word in the sentence and about its syntactic
relationship with the surrounding items.

Figure 1.4 shows a possible supertag assignment for the word took in LTAG. The incomplete
tree serves as a primitive structure in the formalism that directly dictates the position and number
of the verb’s nominal argument phrases (NP). Given this assignment, a parser would not need to
reconstruct the higher-level constituent structure any more. Instead, it would simply need to link
a group of elementary trees.2

2This illustrative description of LTAG is of course incomplete. A second operation called adjoining also allows
the insertion of trees into the inner structure of other trees.
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S

NP↓ VP

V

took

NP↓

Figure 1.4: LTAG elementary tree for likes.

Information of this sort may aid in the analysis of discontinuous constituents. “Non-standard”
word order, including discontinuity, can be expected to be directly encoded in the lexical category
assignment. This work shall therefore explore its integration based on two approaches: by using the
output of a dedicated supertagger as additional input for a neural parser (pipeline) and by jointly
training a neural model to perform both parsing and supertagging (auxiliary/multi-task learning).
Due to the public availability of a state-of-the-art supertagger for CCG (Yoshikawa et al., 2017),
the focus will be on CCG supertags. Additionally, several other kinds of supertags (LTAG-spinal,
LCFRS) and sequence labellings tasks (chunking, dependency parsing) will be compared in terms
of their suitability as auxiliary tasks for neural discontinuous constituent parsing.

A secondary aim is to present the LCFRS formalism and to give an overview of the landscape
of both grammar-based and grammar-less parsing approaches for discontinuous constituent trees.
This is done to outline the advancements that led to the development of the stack-free transition
system of Coavoux and Cohen (2019) used as the basis for the incorporation of supertags in this
work.

1.3. Related Work

The potential of assigning supertags to word sequences using statistical methods as a pre-step
to parsing was initially successfully explored by Bangalore and Joshi (1999) for lexicalised tree
adjoining grammar (LTAG) and adapted for combinatory categorial grammar (CCG) by Clark
and Curran (2010). Recently, Ruprecht and Mörbitz (2021); Ivliev (2020) have presented the first
extraction algorithm for supertags based on linear context-free rewriting systems (LCFRS) and
achieved state-of-the-art results in discontinuous constituent parsing.

These approaches differ from this work in that they use supertagging as an upstream task for
grammar-based parsers of the respective formalism, for instance LCFRS chart-parsing (Ruprecht
and Mörbitz, 2021). The extracted supertags or supertag distributions are directly utilised to
reduce ambiguity and increase parsing speed by ruling out or prioritizing certain pre-terminal
rule applications which effectively prunes the derivational search space. In contrast to that, I
investigate the effect of supertagging in the context of a neural, grammar-less parsing approach
as an input feature and as an auxiliary task. From this also follows that my choice of supertags
is not structurally restricted to a certain formalism but rather to statistical correlations between
supertag assignments and parsing actions.

The first thorough exploration of auxiliary/multi-task learning for natural language processing
was performed by Collobert and Weston (2008) who simultaneously predict part-of-speech tags,
chunk labels3, named entity tags, semantic roles, semantic similarity and the likelihood of a sen-
tence’s well-formedness from jointly trained word embeddings. Investigations into the realm of
multi-task learning that followed are mainly centred around dependency parsing4 and in many

3Chunking separates a sentence into simple constituent types like NP or VP and is sometimes called shallow
parsing (Collobert and Weston, 2008). Each word is only assigned one unique type. The sequence a pink car would
be tagged with B-NP I-NP I-NP with B-NP marking the start of the chunk.

4Dependency grammars are a class of grammatical theories centred around the notion of dependency as opposed to
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cases deal with incorporating higher-level semantic tasks.
Candito (2022) extracts auxiliary tasks from semantic dependency graphs like the number of

dependents of a word and a concatenation of incoming arc labels to increase the accuracy of a
dependency parser by training the model to predict these features from a shared bidirectional
recurrent neural network. Zhou et al. (2020a) explore jointly learning dependency and span-based
constituent parsing together with semantic parsing. This approach is extended by Zhou et al.
(2020b) who propose improving the quality of language models like BERT (Devlin et al., 2019)
with informed linguistic knowledge by jointly training on the aforementioned tasks.

These approaches differ from this work’s objective through the choice of task(s) they incorpo-
rate. They are centred around bridging the gap between syntactic and semantic representations
while I try to deal with the open problem of discontinuous constituency by searching for a syntac-
tical localised lower-level task that is informative of these phenomena.

The research on multi-task approaches pertaining to supertagging is fairly limited. Yoshikawa
et al. (2017) extract dependency graphs from CCG derivations and train a neural model to predict
both dependency structure and CCG supertags from a shared representation to resolve derivational
ambiguity in the CCG formalism. But the actual CCG parsing is performed using an A* algorithm
based on the supertag probabilities predicted by the model. Zhu and Sarkar (2019) deconstruct
LTAG supertags into several components like head, root or spine effectively bootstrapping new tasks
from an existing supertag annotated corpus. They use these tasks to improve LTAG supertagging
performance. Søgaard and Goldberg (2016) show that combining CCG supertagging and POS
tagging using a hierarchical approach where the easier POS tagging task is predicted from a
lower level yields improvements in supertagging accuracy. This work borrows from their idea
of a hierarchical auxiliary task arrangement. Bingel and Søgaard (2017) explore binary multi-
task relations between a range of natural language processing tasks including CCG tagging, POS
tagging, chunking and semantic tasks. The effect of supertag prediction as an auxiliary task for
parsing has not been examined to this date.

The work on beneficial auxiliary tasks for neural constituent parsing is also sparse. Coavoux
and Crabbé (2017b) predict several word tagging tasks from a shared representation of a model
for projective constituent parsing: POS tags, morphological features and functional label, i.e. the
relation of a word to its head in a constituent. To the best of my knowledge, besides jointly
predicted POS tags (Coavoux and Cohen, 2019), the only exploration of multi-task frameworks for
grammar-less discontinuous constituent parsers to this date has been recently brought forward by
Johansson and Adesam (2020) who train constituent parsing on a Swedish discontinuous treebank
with a similar annotation scheme to NeGra/TIGER. They pursue parsing based on differently
annotated corpora, including dependency treebanks, as an auxiliary task with predictions from
a shared intermediate representation to leverage the limited availability of linguistic resources in
Swedish. This differs from the work at hand in that the objectives of Johansson and Adesam
(2020) are all parsing tasks predicted at the same model level while I explore the implementation
of a lower-level task. Furthermore, Johansson and Adesam (2020) use a different transition system
for discontinuous constituent parsing.5

To the best of my knowledge, the work at hand is the first exploration of supertagging in a
pipeline arrangement and as an auxiliary task for grammar-less neural constituent parsers. It
might therefore help to identify if a shared neural representation benefits parsing and specifically
the resolvement of challenging discontinuous phenomena and if further research in this direction
is a worthwile endeavour.

Note that there has been a substantial amount of research on the question of beneficial schedul-
constituency. While constituent phrase structure grammars arrange words into hierarchical constituents, dependency
grammars express word-to-word relations through labelled directed arcs (Jurafsky and Martin, 2009, chapter 12.7).

5They utilise the Swap action for reordering (Versley, 2014) while this work is based on the stack-free Merge-
approach proposed by Coavoux and Cohen (2019).
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ing of multi-task learning (Kiperwasser and Ballesteros, 2018; Zaremoodi and Haffari, 2019) and
on metrics for the exploration of well complementing auxiliary tasks (Ben-David and Schuller,
2003; Bingel and Søgaard, 2017) in the context of natural language processing. I will leave an
examination of supertagging and parsing in this regard to future work.

1.4. Structure

The following sections are structured as follows. Section 2 gives a detailed introduction to linear
context-free rewriting systems (LCFRS), a natural extension of context-free grammars that ac-
counts for discontinuous constituents. Section 3 presents two discontinuous parsing approaches:
LCFRS CYK chart-parsing and grammar-less transition-based parsers. Then, in section 4 follows
a discussion of the stack-free transition system proposed by Coavoux and Cohen (2019) including
its implementation. Section 5 explains the formalism of combinatory categorial grammar (CCG),
a major lexicalised grammar theory that gives rise to informative supertags, and examines its ac-
count of discontinuous phenomena that can be found in the discontinuous Penn Treebank (DPTB).
Finally, section 6 describes the implementations and results of several experiments for the integra-
tion of CCG supertags into the stack-free transition-based neural parser. Section 7 summarises
the findings and discusses them in a broader context.
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2. Transgressing Context-Freeness

Discontinuous constituent trees can be seen as structural descriptions produced by derivations
of linear context-free rewriting systems (LCFRS). They were introduced by Vijay-Shanker et al.
(1987) and are an extension of traditional context-free grammars (CFG), which do not suffice
to adequately treat discontinuous structures. This section shall be concerned with defining both
CFGs and LCFRSs as well as with the derivation trees that accompany them.

2.1. Prerequisites

The formalism of context-free grammars (CFG), developed by Chomsky (1956), has a long history
as the foundation for modelling the syntactic structure of natural languages. In order to define
CFGs, several prerequisites are needed. I follow the definitions in Kallmeyer (2010).

Definition 2.1 (Alphabet, word, language).
Let X be a non-empty finite set of symbols.

1. X is called an alphabet.

2. A string x1x2....xn with n ∈ N and xi ∈ X for all i ∈ {1, ..., n} is called a non-empty word
over X. X+ is defined as the set of all non-empty words over X.

3. I define X∗ := X+ ∪ {ε} for a new element ε /∈ X+ called empty word. ε is defined as the
neutral element of concatenation on X∗, i.e. for w ∈ X∗ : wε = εw = w. w ∈ X∗ is called a
word over X.

4. A set L is called a language over X iff L ⊆ X∗.

Two explanatory notes on the preceding definition: firstly, for i, j ∈ Z the expression {i, ..., j} is
used as a shorthand notation for {n ∈ Z | i ≤ n ≤ j}. Secondly, in the context of natural language
an alphabet X can be a set of natural language words treated as unique symbols. For clarity, the
term word will only refer to the formal definition given above in this work unless stated otherwise.

Definition 2.2 (Length of a word).
Let X be an alphabet and w ∈ X∗. The length of w is denoted by |w| and defined recursively:

|w| :=

1 + |w′|, if w = xw′ for some x ∈ X,

0, otherwise.

Definition 2.3 (Word repetition).
Let X be an alphabet and w ∈ X∗. Word exponentiation for k ∈ N0 is defined as word repetition:

wk :=

ε, if k = 0,

wwk−1, otherwise.

Definition 2.4 (Context-free grammar).
A context-free grammar G is defined by a 4-tuple G = ⟨N,T, P, S⟩ where

1. N is an alphabet. The elements of N are called nonterminals.

2. T is an alphabet. The elements of T are called terminals.

3. it holds that N ∩ T = ∅.
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4. P ⊂ N × (N ∪T )∗ is a finite set of productions/rewriting rules. A production ⟨A, β⟩ ∈ P can
be written as A→ β.

5. S ∈ N is the start symbol.

Context-free grammars describe languages by generating the words of the language through
derivation. The following definition is given by Jurafsky and Martin (2009, chapter 12):

Definition 2.5 (Derivation).
Let G = ⟨N,T, P, S⟩ be a CFG.

1. Given w,w′ ∈ (N ∪ T )∗, w directly derives w′ iff there exists a production A → β ∈ P and
there are strings α, γ ∈ (T ∪ N)∗ such that w = αAγ and w′ = αβγ. In this case we write
w ⇒ w′.

2. For w1, w2, ..., wn ∈ (N ∪ T )∗, n ∈ N such that w1 ⇒ w2, w2 ⇒ w3, ..., wn−1 ⇒ wn we write
w1

∗⇒ wn and say that w derives w′. ∗⇒ is the reflexive transitive closure of ⇒.

For w1, w2, w3 ∈ (N∪T )∗ such that w1 ⇒ w2 and w2 ⇒ w3 the shorthand-notation w1 ⇒ w2 ⇒ w3

is used.

Definition 2.6 (Context-free language).
For a CFG G = ⟨N,T, P, S⟩ the language of G is denoted by LG and defined as the set of all
strings that consist only of terminal symbols and can be derived from the start symbol:

LG := {w | w ∈ T ∗ ∧ S
∗⇒ w}.

A language L is called context-free iff there exists a CFG G such that L = LG.

Example 2.7.
Equation 2.1 gives a set of CFG rules for the language L over {a, b, c} with L = {xyz | x, z ∈
{a, b}+, y ∈ {c}+}, numbered for easy reference. A derivation of the word abcba ∈ L is shown in
equation 2.2 with the numbers below the arrows referencing the production that was applied.

r1 : S → ACA

r2 : A→ aA

r3 : A→ bA

r4 : A→ a

r5 : A→ b

r6 : C → cC

r7 : C → c

(2.1)

S ⇒
r1
ACA⇒

r2
aACA⇒

r5
abCA⇒

r7
abcA⇒

r3
abcbA⇒

r4
abcba (2.2)

The definition of trees is essential to our matter. I base the following definitions on Kallmeyer
(2010, chapter 1).

Definition 2.8 (Directed graph).

1. A directed graph is a pair ⟨V,E⟩ where V is a finite set of nodes/vertices and E ⊆ V × V a
set of edges.

2. For v ∈ V the in-degree of v is defined as |{v′ ∈ V | ⟨v′, v⟩ ∈ E}|.
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3. For v ∈ V the out-degree of v is defined as |{v′ ∈ V | ⟨v, v′⟩ ∈ E}|.

4. E+ is the transitive closure of E; E∗ is the reflexive transitive closure of E.

Definition 2.9 (Path).
A sequence v1, ..., vn of vertices in V with n ∈ N such that vkEvk+1 for all k ∈ {1, ..., n − 1} and
all vertices in the sequence are distinct is called a path in ⟨V,E⟩.

Definition 2.10 (Tree).

1. A tree is a triple ⟨V, ◁, v̂⟩ such that6

(a) ⟨V, ◁⟩ is a directed graph and v̂ ∈ V (called the root node),

(b) ◁ is acyclic, i.e., ∄v ∈ V : v ◁+ v,

(c) v̂ has in-degree 0,

(d) all nodes v ∈ V \ {v̂} have in-degree 1 and

(e) every node is accessible from v̂, i.e., ∀v ∈ V : v̂ ◁∗v.

2. Given a tree ⟨V, ◁, v̂⟩,

(a) we say that v1 directly dominates v2 iff v1 ◁ v2 for v1, v2 ∈ V . In this case, we call v1 the
parent of v2 and v2 a daughter of v1.

(b) we say that v1 dominates v2 iff v1 ◁
∗ v2 for v1, v2 ∈ V .

(c) we say that v2 is a sister of v3 iff v1 ◁ v2 and v1 ◁ v3 for v1, v2, v3 ∈ V .

3. An ordered tree is a quadruple ⟨V, ◁,≺, v̂⟩ such that ⟨V, ◁, v̂⟩ is a tree and ≺ is a linear
precedence relation with the following properties:

(a) ≺ is irreflexive, antisymmetric and transitive,

(b) ∀v1, v2 ∈ V : (v1 ⋪∗ v2 ∧ v2 ⋪∗ v1)⇒ v1 ≺ v2 ∨ v2 ≺ v1,

(c) ∀v1, v2 ∈ V : (v1 ⋪∗ v2 ∧ v2 ⋪∗ v1) ∧ ((∃v3 ∈ V : v3 ◁ v1 ∧ v3 ≺ v2) ∨ (∃v4 ∈ V :
v4 ◁ v2 ∧ v1 ≺ v4))⇒ v1 ≺ v2,

(d) nothing else is in ≺.

A node with out-degree 0 is called a leaf. All other nodes are called internal.

Definition 2.11 (Labelling).
A labelled directed graph is a triple ⟨V,E, λ⟩ such that ⟨V,E⟩ is a directed graph and λ is a function
λ : V → A called the node labelling of the graph over signature A. This definition naturally extends
to labelled trees ⟨V, ◁, v̂, λ⟩ and labelled ordered trees ⟨V, ◁,≺, v̂, λ⟩.

For ordered and for labelled trees I explicitly include the precedence relation and the labelling
function in the tuple defining the respective tree type since it will facilitate working with these
structures in the following sections.

Definition 2.12 (Syntactic tree).
Let N and T be disjoint alphabets (of nonterminal and terminal symbols).
A syntactic tree over N and T is an ordered finite labelled tree ⟨V, ◁,≺, v̂, λ⟩ such that λ(v) ∈ N
for each internal node v and λ(u) ∈ (N ∪ T ∪ {ε}) for each leaf u.

Definition 2.13 (Parse tree, derivation tree, tree language of a CFG).
Let G = ⟨N,T, P, S⟩ be a CFG.

6The use of the symbol ◁ was adopted from Versley (2014). I naturally extend the notation to v1 ⋪ v2 :⇔
⟨v1, v2⟩ /∈ ◁.
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1. A syntactic tree ⟨V, ◁,≺, v̂, λ⟩ over N and T is a parse tree in G iff

(a) λ(v) ∈ (T ∪ {ε}) for every v ∈ V if v is a leaf,

(b) for every v0, v1, ..., vn ∈ V, n ∈ N such that v0 ◁ vi for all i ∈ {1, ..., n} where there is no
u ∈ V : v0 ◁ u and u /∈ {v1, ..., vn} and where vj ≺ vj+1 for all j ∈ {1, ..., n− 1}, it holds
that λ(v0)→ λ(v1), ..., λ(vn) ∈ P .

2. A parse tree ⟨V, ◁,≺, v̂, λ⟩ is a derivation tree in G iff λ(v̂) = S.

3. The tree language of G is defined as L D
G := {D | D is a derivation tree in G}.

Following Chomsky (1963) the notion of generative capacity can be introduced:

Definition 2.14 (Generative capacity).

• The weak generative capacity of a grammar G is defined by all strings it can generate, i.e.
by LG.

• The strong generative capacity of a grammar G is defined by all structural descriptions it
produces. For a grammar where the notion of a tree language is defined this amounts to L D

G .

Example 2.15.
Figure 2.1 depicts a derivation tree for the word abcba in the grammar given in example 2.7.

S

A

a A

b

C

c

A

b A

a

Figure 2.1: Derivation tree for the word abcba using the rules from example 2.7.

2.2. Insufficiency of Context-Free Grammars

Since the early 1980s, many researchers argued that CFGs are inadequate for describing natural
language. Many of these arguments, however, were based on the strong generative capacity of
grammars, e.g. Bresnan et al. (1982), who analysed non-local dependencies in Dutch. They
relied on assumptions about the underlying structure and were therefore susceptible to critique.
Primarily, this style of argument does not rule out the possibility that a different context-free
grammar formalism (with different structural descriptions) might be able to generate the language
in question (Kallmeyer, 2010, chapter 2).

The matter was finally resolved when Shieber (1985) showed that nesting relative clauses with
crossing dependencies in Swiss German also surpass the weak generative capacity of CFGs. These
findings led to the search of appropriate grammatical formalisms strong enough to generate long-
distance relationships and at the same time restricted enough to allow for efficient parsing. In this
context, Joshi (1985) coined the term mild context-sensitivity for a category of formalisms that
possess certain desirable properties. Kallmeyer (2010, chapter 2) give the following definition for
mild context-sensitivity:

Definition 2.16 (Mild context-sensitivity).

1. A set of languages L over an alphabet X is mildly context-sensitive iff
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CFG:

γ

A

LCFRS:

γ2 γ3

••

γ1

A

Figure 2.2: Illustration of the domain of locality of CFG and LCFRS, inspired by Kallmeyer (2010,
chapter 1).

(a) L contains all context-free languages,

(b) L can describe a limited amount of cross-serial dependencies, i.e. there is an n ≥ 2 such
that {wk | w ∈ T ∗} ∈ L for all k ≤ n,

(c) the languages in L can be parsed in polynomial time and

(d) the languages in L have the constant growth property.

2. a formalism F is mildly context-sensitive iff the set of languages it can describe {LG | G ∈ F}
is mildly context-sensitive.

The constant-growth property means, that if one orders the lengths of the words in a language,
the difference in length between two consecutive elements is restricted by a constant (Kallmeyer,
2010, chapter 2). This is defined formally by Weir (1988) in the following way:

Definition 2.17 (Constant growth property).
Let L be a language over an alphabet X. L has the constant growth property iff there is a constant
c0 > 0 and a finite set of constants C ⊂ N such that for all w ∈ L with |w| > c0, there is a w′ ∈ L
with |w| = |w′|+ c for some c ∈ C.

Several formalisms in the scope of mild context-sensitivity have been proposed. Among these
are tree adjoining grammar (TAG) (Joshi et al., 1975), head grammar (HG) (Pollard, 1984),
linear indexed grammars (LIG) (Gazdar, 1988) and linear context-free rewriting systems (LCFRS)
(Vijay-Shanker et al., 1987) as well as certain variants of combinatory categorial grammar (CCG)
(Steedman, 1989, 1996, 2000).

LCFRSs were shown to naturally arise from (discontinuous) treebank representations (Kallmeyer,
2010, chapter 1). They are an adequate formalism for describing discontinuous constituents utilised
in treebanks and will therefore be a subject for further inspection in the following sections.

2.3. Defining LCFRSs

Linear context-free rewriting systems (LCFRS) are a powerful type of mildly context-sensitive
grammar formalism that extends the rewriting-nature of CFGs. Like context-free grammars, the
formalism possesses rewriting rules with left-hand sides (LHS) and right-hand sides (RHS). Words
are derived through recursive application of the rules which in turn constitute the constituent
structure desirable from a linguist’s point of view.

The key difference is the fact that nonterminals do not yield a string of terminals, but a tuple of
strings. The strings in one tuple may be intertwined with elements of other tuples. This allows an
element to have a yield of non-adjacent strings. The size of the tuples is fixed for each nonterminal
A and is called its fan-out. Thus, the fan-out of A gives the maximum number of (discontinuous)
components A dominates. The fan-out of the start symbol is set to 1. Figure 2.2 shows a tree
where the nonterminal A yields three non-adjacent components γ1, γ2, γ3.



12

LCFRSs are equivalent to simple range concatenation grammars (SRCG) (Boullier, 1998b) and
to multiple context-free grammars (MCFG) (Seki et al., 1991). A formal definition for LCFRS was
first outlined by Vijay-Shanker et al. (1987). In the following I will reference the characterisation
given by Evang (2011) who adapts the SRCG notation from Boullier (1998b) for LCFRS.

Definition 2.18 (Linear context-free rewriting system).
A linear context-free rewriting system (LCFRS) is a 5-tuple G = ⟨N,T, V, P, S⟩ where

1. N,T and V are alphabets. The elements of N are called nonterminals, those of T terminals
and those of V variables. T and V are disjoint.

2. each nonterminal A ∈ N has an associated fan-out denoted by a function dim : N → N.

3. the maximum fan-out is denoted by dim(G) := max({dim(A) | A ∈ N}). For k = dim(G),
G is said to have fan-out k and is called a k-LCFRS.

4. P ⊂ (N × ((T ∪ V )∗)≤dim(G)) × (N × V ≤dim(G))<N0 is a finite set of productions/rewriting
rules.7 A rule

r = ⟨⟨A0, ⟨χ0,1, ..., χ0,dim(A0)⟩⟩, ⟨⟨A1, ⟨χ1,1, ..., χ1,dim(A1)⟩⟩, ..., ⟨Am, ⟨χm,1, ..., χm,dim(Am)⟩⟩⟩

can be written as

A0(⟨χ0,1, ..., χ0,dim(A0)⟩)→ A1(⟨χ1,1, ..., χ1,dim(A1)⟩)...Am(⟨χm,1, ..., χm,dim(Am)⟩)

where the part left of the arrow is called left-hand side (LHS) and denoted by LHS(r) and the
part right of the arrow is called right-hand side (RHS) and denoted by RHS(r). Furthermore:

(a) Every variable occurring in a rule occurs exactly once on the LHS and exactly once on
the RHS.

(b) There is a function

rank : P → N, r 7→ |RHS(r)|,

associated with the grammar which assigns the number of its RHS’s components to a
rule. Furthermore, rank is also defined for the grammar as the maximum rank occurring
for any rule:

rank(G) := max({rank(r) | r ∈ P}).

(c) The strings χ0,1, ..., χ0,dim(A0) ∈ (T ∪ V )∗ are called the LHS arguments.
⟨χ0,1, ..., χ0,dim(A0)⟩ is called the LHS argument tuple.

(d) The variables χ1,1, ..., χ1,dim(A1), ..., χm,1, ..., χm,dim(Am) ∈ V are called the RHS ar-
guments. The tuples ⟨χ1,1, ..., χ1,dim(A1)⟩, ..., ⟨χm,1, ..., χm,dim(Am)⟩ are called the RHS
argument tuples.

(e) if rank(r) = 0, the RHS is written as ε.

By convention Ak(⟨χn,1, ..., χn,dim(Ak)⟩) is equivalent to Ak(χn,1, ..., χn,dim(Ak)) and a tuple can
be denoted by a variable in bold, e.g. ααα. ααα[i] refers to the i-th element of the tuple. The fan-out
of a grammar gives the maximum number of non-adjecent strings in the yield of a nonterminal.

In this formalism, rewriting rules describe how the yield of the nonterminal on the LHS can be
computed using the yields of the RHS nonterminals. The notion of a yield can be defined formally
(Evang and Kallmeyer, 2011):

7X≤n denotes the set of all tuples with maximum number of components n over a set X. X<N0 is the set of all
finite tuples over X.
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Definition 2.19 (Yield and string language of an LCFRS).
Let G = ⟨N,T, V, P, S⟩ be an LCFRS.

1. The function yield : N → P((T ∗)≤dim(G)) is defined as follows: for every A ∈ N :

(a) for every A(ααα)→ ε ∈ P , it holds that ααα ∈ yield(A).
(b) for every rule

A0(χ0,1, ..., χ0,dim(A0)) → A1(χ1,1, ..., χ1,dim(A1))...Am(χm,1, ..., χm,dim(Am)) ∈ P and
for all αααi ∈ yield(Ai) with i ∈ {1, ...,m} it holds that ⟨f(χ0,1), ..., f(χ0,dim(A))⟩ ∈
yield(A) where the composition function f is defined as follows:

i. f(t) = t for all t ∈ T ,
ii. f(χi,j) = ααα

[j]
i if χi,j ∈ V for all i ∈ {1, ...,m} and all j ∈ {1, ..., dim(Ai)}.

iii. f(βγ) = f(β)f(γ) for all β, γ ∈ (T ∪ V )+.
(c) nothing else is in yield(A).

2. The string language of G is LG = {w | ⟨w⟩ ∈ yield(S)}.

The yield-function maps each nonterminal A to its set of possible yields. Every element in the
yield is the result of a distinct combination of available yields of the RHS nonterminals of a rule
where A stands on the LHS. Each of these elements is a tuple of sequences of terminals.

The function f replaces each variable with the corresponding component of the yield of the RHS
argument it also occurs in. Since for every χ0,k ∈ V with k ∈ {1, ..., dim(A0)} there exists exactly
one χi,j among the RHS arguments with χi,j = χ0,k and unique indices i, j with i ∈ {1, ...,m}
and j ∈ {1, ..., dim(Ai)} (definition 2.18 (3.f)), it follows that f(χ0,k) = ααα

[j]
i . Thus, the function is

well-defined.

Example 2.20.
Equation 2.3 gives a set of LCFRS production for the language L over {a, b, c} with L = {wcccw | w ∈
{a, b}+}, numbered for easy reference.

number LHS RHS
r1 S(UVWX) → A(U,X)B(V,W )
r2 A(aU, aX) → A(U,X)
r3 A(bU, bX) → A(U,X)
r4 A(a, a) → ε

r5 A(b, b) → ε

r6 B(c, cc) → ε

r7 B(cc, c) → ε

(2.3)

The production A(b, b)→ ε specifies that the tuple ⟨b, b⟩ is in the yield of A and A(aU, aX)→
A(U,X) means that it is possible to generate a new tuple in the yield of A from an already existing
one by prepending a to both components.

It holds that ⟨abcccab⟩ ∈ yield(S) since:

⟨b, b⟩ ∈ yield(A), using r5

⟨ab, ab⟩ ∈ yield(A), using r2, identifying ⟨U,X⟩ with ⟨b, b⟩ ∈ yield(A),
⟨c, cc⟩ ∈ yield(B), using r6

⟨abcccab⟩ ∈ yield(S), using r1, identifying ⟨V,W ⟩ with ⟨c, cc⟩ ∈ yield(B) and
⟨U,X⟩ with ⟨ab, ab⟩ ∈ yield(A).

(2.4)
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Similar to context-free grammars it is possible to define derivation trees. Derivation trees
model the construction of a word beginning with the start symbol. Unlike phrase-structure trees
of context free-grammars, LCFRS derivation trees are unordered. For two nodes it is not possible
to say that one precedes the other since their children might be intertwined, leading to crossing
branches. Nevertheless, LCFRS derivation trees are usually drawn so that the positions of the
leaves correspond to their positions in the word. A range is assigned to each leaf that uniquely
identifies its position in the word. For two internal nodes v1, v2, usually v1 is drawn left of v2 if it
dominates some leaf that precedes all leaves dominated by v2 in the word.

An internal node with a nonterminal as label together with its children represents a rule appli-
cation. The parent corresponds to the LHS nonterminal while the children consist of other internal
nodes labeled with the RHS nonterminals and/or leaves that correspond to terminals on the LHS.

Evang (2011) gives a formal definition for derivation trees that I outline in the following. It
requires defining the concepts of range, range concatenation and rule instance, which are taken
from range concatenation grammars (Boullier, 1998b). I modified the range notation slightly to
account for its use in other contexts in this work.

Definition 2.21 (Indices).
LetX be an alphabet. The set of all indices for a word w overX is denoted as Ind(w) := {1, ..., |w|}.

Definition 2.22 (Positions).
Let X be an alphabet. The set of all positions for a word w over X is denoted as Pos(w) :=
Ind(w) ∪ {0}.

Definition 2.23 (Tuple projection).

1. Let X be an alphabet. For some tuple of positive integers ⟨i1, ..., in⟩ ∈ N<N0 the projection
function π⟨i1,...,in⟩ is defined on all words w ∈ X∗ where i1, ..., in ∈ Ind(w) as

π⟨i1,...,in⟩(w) = wi1 , ..., win
.

π⟨i1,...,in⟩(w) is usually written as w⟨i1,...,in⟩. For the 0-tuple ⟨ ⟩ it naturally holds that
w⟨ ⟩ = ε.

2. Let X be an alphabet. For some tuple of tuples of positive integers

⟨⟨i1,1, ..., i1,n1⟩, ..., ⟨im,1, ..., im,nm
⟩⟩ ∈ (N<N0)<N0

the second-degree tuple projection function π2
⟨⟨i1,1,...,i1,n1 ⟩,...,⟨im,1,...,im,nm ⟩⟩ is defined on all

words w ∈ X∗ where i1,1, ..., i1,n1 , ..., im,1, ..., im,nm
∈ Ind(w) as

π2
⟨⟨i1,1,...,i1,n1 ⟩,...,⟨im,1,...,im,nm ⟩⟩(w) = ⟨π⟨1,1,...,i1,n1 ⟩(w), ..., π⟨im,1,...,im,nm ⟩(w)⟩.

π2
⟨⟨i1,1,...,i1,n1 ⟩,...,⟨im,1,...,im,nm ⟩⟩(w) is usually written as w⟨⟨i1,1,...,i1,n1 ⟩,...,⟨im,1,...,im,nm ⟩⟩. For

the 0-tuple ⟨ ⟩ it naturally holds that π2
⟨ ⟩(w) = ⟨ ⟩. It is not abbreviated to w⟨ ⟩ to avoid

confusion with the first-order 0-tuple projection.

Definition 2.24 (Range).

1. A tuple ⟨a, b⟩ ∈ N0 × N0 with a ≤ b is called a range. A range ⟨a, b⟩ with a = b is called an
empty range.

2. The set of all ranges is denoted by Ranges.

3. The function ⟨: ⟩ : Ranges→ N<N maps a range ⟨a, b⟩ to a tuple where all natural numbers
from a+ 1 to b are arranged in order, i.e.:

⟨a, b⟩ 7→ ⟨a+ 1, a+ 2, ..., b− 1, b⟩
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⟨: ⟩(⟨a, b⟩) can be written as ⟨a : b⟩.

4. ⟨: ⟩ is extended to tuples of ranges, e.g. ⟨: ⟩(⟨⟨a1, b1⟩, ⟨a2, b2⟩⟩) = ⟨⟨a1 : b1⟩, ⟨a2 : b2⟩⟩.

5. The length of a range ⟨a, b⟩ is defined as |⟨a, b⟩| := b− a.

6. Two ranges ⟨a1, b1⟩ and ⟨a2, b2⟩ are called non-overlapping iff b1 ≤ a2 ∨ b2 ≤ a1.

7. The precedence relation <range ⊂ Ranges×Ranges is defined as follows:

⟨a1, b1⟩<range⟨a2, b2⟩ :⇔ b1 ≤ a2

Definition 2.25 (Ranges in a word).
Let X be an alphabet and w a word over X.

1. A range ⟨a, b⟩ is called a range in w iff a, b ∈ Pos(w).

2. The set of all ranges in w is denoted by Ranges(w).

3. For some range ⟨a, b⟩ in w, w⟨a:b⟩ is called a substring of w and conventionally written as
wa:b.

Definition 2.26 (Range concatenation).

1. The concatenation operation on two ranges ⟨a1, b1⟩ and ⟨a2, b2⟩ in a word w over an alphabet
X where b1 = a2 is naturally defined as ⟨a1, b1⟩◦ ⟨a2, b2⟩ = ⟨a1, b2⟩. It is undefined if b1 ̸= a2.

2. A string of ranges ρ1...ρn ∈ Ranges(w)∗ where ρi ◦ ρi+1 is defined for all i ∈ {1, ..., n− 1}, is
called contiguous. For such a string, range concatenation is defined as follows:

⃝(ρ1...ρn) :=


ε if n = 0,

ρ1 if n = 1,

⃝((ρ1 ◦ ρ2)ρ3...ρn) otherwise.

It follows directly from this definition that for two ranges ρ1, ρ2 in a word w over some alphabet
X where the concatenation of ρ1 and ρ2 is defined, the following holds: w⟨:⟩(ρ1)w⟨:⟩(ρ2) = w⟨:⟩(ρ1◦ρ2).

Definition 2.27 (Rule instance).
Let G = ⟨N,T, V, P, S⟩ be an LCFRS, r = A0(χ0,1, ..., χ0,dim(A)) → A1(χ1,1, ..., χ1,dim(A1))...
Am(χm,1, ..., χm,dim(Am)) ∈ P a rule and w ∈ T ∗ a word.

1. r can be transformed into a rule instance of r with respect to w by replacing the characters
of the argument strings χ0,1, ..., χ0,dim(A0), χ1,1, ..., χ1,dim(A1), ..., χm,1, ..., χm,dim(Am) of p in
the following fashion:

(a) All terminals t get replaced with some range ⟨a− 1, a⟩ in w such that wa−1:a = t.

(b) All variables get replaced with some range ⟨a, b⟩ in w.

(c) All empty arguments, i.e. if χi,j = ε for some i, j with i ∈ {0, ...,m} and j ∈
{1, ..., dim(Ai)}, get replaced with some range ⟨a, a⟩ in w.

The resulting arguments are strings of ranges. Each of these strings ρi,j must be contiguous
and gets replaced by ⃝(ρi,j).

2. The resulting rule instance has the form A0(ρρρ0)→ A1(ρρρ1), ..., Am(ρρρm) where
ρρρk ∈ Ranges(w)dim(Ak) is a tuple of ranges for all k ∈ {1, ...,m}.
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3. The set of all rule instances of r wrt. w is called Instances(r, w).

The process described in definition 2.27 converts each of the arguments to a range in the given
word where all the terminal symbol match an occurrence in the word. The range for variables can
be freely chosen since there are no indications as to the substring they span. Each of the resulting
sequences of ranges needs to be contiguous, i.e. the chosen ranges need to be adjacent, since a
tuple component always has to match a continuous substring in the word.

Example 2.28.
Given the LCFRS from example 2.20 and the word w = abcccab, the following are some examples
for rule instances for rule r2 = A(aU, aX) → A(U,X) along with the two substrings of w their
LHS spans:

A(⟨0 : 2⟩, ⟨5 : 7⟩)→ A(⟨1 : 2⟩, ⟨6 : 7⟩), abcccab. .
A(⟨0 : 5⟩, ⟨5 : 7⟩)→ A(⟨1 : 5⟩, ⟨6 : 7⟩), abcccab. .
A(⟨0 : 2⟩, ⟨5 : 6⟩)→ A(⟨1 : 2⟩, ⟨6 : 6⟩), abccca.b

A(⟨5 : 7⟩, ⟨0 : 2⟩)→ A(⟨6 : 7⟩, ⟨1 : 2⟩), ab. . cccab

A(⟨5 : 7⟩, ⟨0 : 7⟩)→ A(⟨6 : 7⟩, ⟨1 : 7⟩) ∈ Instances(w, r2) abcccab. . . . . . . .

(2.5)

Note that a rule instance can map a terminal to any matching occurrence in the word regardless
of order. Two ranges in a range tuple can even overlap. However, as established, the start symbol
must span one continuous range. Thus, all spans in a derivation must be reducible through
concatenation to a single range. This is checked by determining if all of the RHS elements of
a rule instance, i.e. assumptions about the span of its variables, can be found as LHS of some
instantiated rule. Such a derivation naturally forms a tree.

Definition 2.29 (LCFRS derivation tree).
Let G = ⟨N,T, VG, P, S⟩ be an LCFRS and w = w1...wn ∈ T ∗ a word.

1. Let D = ⟨V, ◁, v̂, λ⟩ be a labelled tree such that there are pairwise different leaves v1, ..., vn

in D with λ(vi) = ⟨i − 1, i⟩ for i ∈ {1, ..., n} and all other leaves have a label ⟨i, i⟩ for some
i ∈ {0, ..., n}. The function n-yield : V → P(Ranges(w)≤dim(G)) assigns a set of tuples of
ranges to each node in the tree and is defined as follows:

(a) For every leaf u ∈ V : n-yield(u) = {⟨λ(u)⟩}.

(b) For every internal node v0 ∈ V , for every order v1, ..., vm of all pairwise different in-
ternal nodes v1, ..., vm ∈ V , where v0 ◁ vi and λ(vi) = Ai ∈ N for all i ∈ {1, ...,m},
for every rule r = A0(ααα0) → A1(ααα1), ..., Am(αααm) ∈ P , for every instance A0(ρρρ0) →
A1(ρρρ1), ..., Am(ρρρm) ∈ Instances(r, w), it holds that ρρρ0 ∈ n-yield(v0) if:

i. ρρρi ∈ n-yield(vi) for all i ∈ {1, ...,m},
ii. for every terminal t occurring in ααα0, there exists a leaf u ∈ V such that v0 ◁ u and

λ(u) is the range with which t was replaced to obtain ρρρ0.
iii. for all i ∈ {1, ..., dim(A0)} such that ααα[i]

0 is empty, there is a u ∈ V such that v0 ◁u,
u is a leaf and λ(u) = ρρρ

[i]
0 .

Nothing else is in n-yield(v0).

2. D is a derivation tree of w in G iff λ(r) = S and ⟨⟨0 : n⟩⟩ ∈ n-yield(r). We write Dw
G for the

set of all derivation trees of w in G.
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3. The tree language of G is defined as L D
G := {D | ∃w ∈ T ∗ : D ∈ Dw

G}.

It will prove useful to define the class of syntactic representations arising from LCFRS derivation
trees independently of the formalism. It can be seen that every LCFRS derivation tree is a range-
labelled tree and that for any range-labelled tree, an LCFRS and a word exist for which it is a
derivation tree.

Definition 2.30 (Partial range-labelled tree).
Let n ∈ N0 be an integer and N an alphabet (of nonterminal symbols).

1. A partial range-labelled tree over N in length n is an unordered finite labelled tree ⟨V, ◁, v̂, λ⟩
such that

(a) λ(v) ∈ N for each internal node v ∈ V ,

(b) λ(u) = ⟨i− 1, i⟩ with i ∈ {1, ..., n} or λ(u) = ⟨i, i⟩ with i ∈ {0, ..., n} for every leaf node
u ∈ V ,

(c) for all leaf nodes u1, u2 ∈ V if |λ(u1)| = |λ(u2)| = 1 and u1 ̸= u2 it must hold that
λ(u1) ̸= λ(u2).

2. A partial ε-free range-labelled tree over N in length n is a partial range-labelled tree over N
in length n such that either

(a) n > 0 and no leaf is labelled with an empty range or

(b) n = 0 and there is only one leaf.

Definition 2.31 (Range-labelled tree).
Let n ∈ N0 be an integer and N an alphabet (of nonterminal symbols).

1. A range-labelled tree over N spanning length n is a partial range-labelled tree ⟨V, ◁, v̂, λ⟩ such
that for every i ∈ {1, ..., n} there exists a leaf u ∈ V such that λ(u) = ⟨i−1, i⟩. This definition
naturally extends to ε-free partial range-labelled trees.

2. Given an alphabet T and a word w ∈ T ∗ such that |w| = n, a range-labelled tree D over N
spanning length n is called a range-labelled tree for w.

In essence, a range labelled tree is an unordered tree with an ordering defined on its leaves. In
the following, the term discontinuous tree will also be used to refer to this class of representations.

Example 2.32.
Given the LCFRS from Example 2.20 and the word abcccab, a possible derivation tree is shown in
figure 2.3.

S

⟨0, 1⟩

A

⟨1, 2⟩

A

⟨2, 3⟩

B

⟨3, 4⟩ ⟨4, 5⟩ ⟨5, 6⟩ ⟨6, 7⟩

n-yield : {⟨⟨0, 7⟩⟩}

n-yield : {⟨⟨0, 2⟩, ⟨5, 7⟩⟩}

n-yield : {⟨⟨1, 2⟩, ⟨6, 7⟩⟩}

n-yield : {⟨⟨2, 3⟩, ⟨3, 5⟩⟩, ⟨⟨2, 4⟩, ⟨4, 5⟩⟩}

Figure 2.3: Derivation tree for the word abcccab in the grammar from example 2.20, including
n-yields.
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This tree illustrates that it would not suffice to map n-yield(v) for v ∈ V to a single tuple of
ranges since adjacent terminals like in the case of B can allow for different combinations of ranges
in the components.

2.4. From Treebanks to LCFRSs

As shown in the last section, LCFRS derivation trees result in the desired tree representations of
non-overlapping discontinuous constituents found in constituency treebanks with discontinuities.
These trees can be directly interpreted as LCFRS derivation trees. Søgaard and Maier (2008) de-
scribe an algorithm for extracting probabilistic LCFRSs (PLCFRS) from discontinuous treebanks.
Kallmeyer and Maier (2010) give the following definition for PLCFRSs.

Definition 2.33 (Probablistic LCFRS).
A probabilistic LCFRS (PLCFRS) is a 6-tuple ⟨N,T, V, P, S, q⟩ such that ⟨N,T, V, P, S⟩ is an
LCFRS and q : P → [0, 1]8 is a function such that for all A ∈ N :∑

A(ααα)→Φ∈P

q(A(ααα)→ Φ) = 1

The function q assigns a conditional probability to each rule which is based on the frequency
with which instances of this rule have been found in the treebank. For more information on the
extraction algorithm, please refer to Søgaard and Maier (2008).

Related research includes the work of Kuhlmann and Satta (2009) who have shown that it is
possible to extract LCFRSs from dependency treebanks. Evang and Kallmeyer (2011) describe a
technique to convert context-free phrase structure trees in the English language Penn Treebank
into a discontinuous format using inherent additional information about non-local dependencies.
This research established the discontinuous Penn Treebank (DPTB).

8For i, j ∈ R the expression [i, j] shall equal {n ∈ R | i ≤ n ≤ j}.
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3. Parsing LCFRS

Parsers for LCFRSs can be utilised for producing discontinuous constituent trees from text. In the
following, I will outline two main parsing approaches: traditional chart parsing and transition-based
parsing. Both approaches are usually data-driven in that they extract their syntactic knowledge
from treebank descriptions. In the case of chart-parsers, this extraction is explicit. To build the
parser, LCFRS rules are automatically extracted from an annotated corpus. Transition-based
parsers allow the implementation of grammar-less parsing. They are usually built on a neural-
network model that is directly trained on a treebank.

3.1. CYK Parser

Traditional Cocke-Younger-Kasami (CYK) parsers were first introduced for CFG by Sakai (1961).
Their underlying idea is to assert the applicability of rules in a bottom-up fashion, starting with
the terminal symbols and progressively validating derivation steps on the basis of the set of rule
applications that has been recovered already. Seki et al. (1991) extended the algorithm to MCFGs.
It was adapted for probabilistic LCFRS by Kallmeyer and Maier (2010). I will discuss the latter
approach in more detail.

3.1.1 Prerequisites

The input of the CYK PLCFRS parser consists of a grammar and an input word. The parser
requires a PLCFRS ⟨N,T, V, P, S, p⟩ to have the following properties:9

1. binary: For every rule r ∈ P : rank(r) ≤ 2 (Gómez-Rodríguez et al., 2009).

2. terminal-restricted: Terminals occur only in terminating rules of the form A(a)→ ε where a
is a terminal. The LHS of all other rules contains only variables (Evang, 2011).

3. gap-explicit: Two different variables in a RHS element of a rule cannot appear next to each
other in the same component on the LHS side. This means that a separation of two variables
always entails that there is a gap between them (Kallmeyer and Maier, 2010).

4. ordered: The order of the variables within each RHS element is the same as their order of
occurrence in the LHS (Villemonte de la Clergerie, 2002).

5. ε-free: There exists no rule with some empty LHS argument or there exists exactly one ε-rule:
S(ε)→ ε and S does not occur in the RHS of any rule (Boullier, 1998a).

The algorithm in Søgaard and Maier (2008) produces PLCFRSs that fulfil properties 2, 3, 4 and
5. Note that for every LCFRS there is an equivalent LCFRS (i.e. generating the same language)
that is ε-free (Boullier, 1998a), ordered (Kallmeyer, 2010, chapter 7), binary (Gómez-Rodríguez
et al., 2009) and terminal-restricted (trivial).

Furthermore, for every LCFRS there exists an equivalent LCFRS that is gap-explicit. An
algorithm for converting an ordered LCFRS into this form is given below. Thus, the properties
above can all be assumed without loss of generality in the following sections.

The algorithm uses the fact that the LCFRS is ordered: variables X1, ..., Xn that appear next
to each other in the same component in the LHS argument tuple and as components in the same
argument tuple on the RHS cannot have another component in between on the RHS since this
would conflict with the order. Therefore only the case ⟨..., X1, ..., Xn, ...⟩ for the RHS is relevant.

The algorithm traverses all rules and all elements Ak(...) on the rule’s RHS. For each element,
the occurrence of useless variables is checked. For overlapping sequences of variables adjacent

9For lack of established nomenclature, I introduce the terms terminal-restricted and gap-explicit.
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Algorithm 3.1 Removing useless variable separation
Input: an ordered LCFRS ⟨N,T, V, P, S⟩
Output: an equivalent LCFRS that is gap-explicit

1: for all rules r = A0(ααα0)→ A1(ααα1)...Am(αααm) ∈ P do
2: for all k ∈ {1, ...,m} do
3: u← {⟨l, r⟩ | r−l ≥ 1,ααα[l]

k ααα
[l+1]
k ...ααα

[r]
k is a max. adjacent substr. of some LHS argument}

4: if not Au
k ∈ N then

5: introduce new nonterminal Au
k to N with dim(Au

k) = dim(Ak)−
∑

⟨l,r⟩∈u r − l
6: for all rules of form Ak(γγγ)→ Φ ∈ P do
7: γγγ′ ← γγγ
8: for all ⟨l, r⟩ ∈ u do
9: merge γγγ′[l], ..., γγγ′[r] into a single component γγγ′[l]...γγγ′[r]

10: end for
11: add new rule Au

k(γγγ′) to P
12: end for
13: end if
14: for all ⟨l, r⟩ ∈ u do
15: pick a new variable X
16: replace components ααα[l]

k , ...,ααα
[r]
k with a single component X

17: replace corresponding substring on the LHS with X
18: end for
19: replace the nonterminal symbol Ak on the RHS with Au

k

20: end for
21: end for
22: Remove useless productions

on the LHS, the sequence with the largest number of elements is considered (maximal adjacent
substring). A set u is introduced to mark the start and end index in the RHS tuple for each
sequence of useless components.

Now, we can replace all of these occurrences with new single variables both on the LHS and on
the RHS and postpone the variable split to the productions governed by Ak.

To achieve this, a new nonterminal Au
k marked with the information which components were

merged when deriving it from Ak, is introduced. All of the rules in P where Ak stands on the
LHS are duplicated for Au

k with all of the components described by u concatenated into single
components since they were already asserted to be adjacent in the rule deriving Ak. In order to
avoid generating new nonterminals for the same Ak with the same merged components multiple
times, no new nonterminal is introduced if Au

k has been created already.
Through the introduction of Au

k , the original nonterminal Ak might have become unreachable
if it cannot be found in the RHS of some other rule. Useless productions can be eliminated in a
final step with the algorithm given in Kallmeyer (2010, chapter 7).

Finally, the parser demands that the input already be assigned with part-of-speech (POS) tags,
given as unary productions for each token. Therefore, when respecting all of the assumptions given
above, every rule has to be of one of the following forms (Kallmeyer and Maier, 2013):

A(a) → ε, with A being a POS tag, a ∈ T
A0(ααα) → A1(ααα), with ααα ∈ V dim(A0), dim(A0) = dim(A1)
A0(ααα0) → A1(ααα1)A2(ααα2), with ααα0 ∈ (V +)dim(A0),ααα1 ∈ V dim(A1),ααα2 ∈ V dim(A2)

(3.1)

3.1.2 Deduction Rules

Parsing is formulated as a set of deduction rules which facilitates proofs of correctness and the
examination of complexity. Deduction rules describe how to infer new elements from existing ones.
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Figure 3.1 shows the general form of a deduction rule. It dictates that the consequent item is
derivable from the antecedent items if the side condition is fulfilled. The side condition can be
empty. Then no condition needs to be fulfilled.

Rule antecedent1, ..., antecedentn
consequent

side condition

Figure 3.1: Deduction principle.

An axiom can be expressed as a deduction rule with no antecedent items. A parsing schema
is comprised of deduction rules with one or more axiom(s) and one or several goal item(s). A
successful parse is characterised by the deducibility of a goal item for a given input (Kallmeyer,
2010, chapter 3).

Following Sikkel and Nijholt (1997), I define a parsing system and the inference relation:

Definition 3.1 (Parsing system).
A parsing system P for some grammar G and a word w is a triple ⟨I, H,R⟩ such that:

1. I is a set of items,

2. H is a set of axioms/hypotheses,

3. R ⊆ Pfin(Pfin(I ∪H)× I) is a set of deduction rules.10,11

Definition 3.2 (Inference relation).
Let P = ⟨I, H,R⟩ be a parsing system for some grammar G and a word w. The following relations
are defined on Pfin(I ∪H)× I.

1. We write Y ⊢r c iff there is Y ′ ⊆ Y such that c can be deduced from the elements in Y ′

using rule r ∈ R, i.e. such that ⟨Y ′, c⟩ ∈ r.

2. We write Y ⊢ c iff ∃r ∈ R : Y ⊢r c.

3. We call Y, c1, c2, ..., cn a deduction sequence iff Y ∪{c1, ..., ci−1} ⊢ ci for all i ∈ {1, ..., n} with
n ∈ N. We conventionally write Y ⊢ c1 ⊢ c2 ⊢ ... ⊢ cn.

4. We write Y ⊢∗ c iff c ∈ Y or Y ⊢ ... ⊢ c.

5. An item c ∈ I is called valid iff H ⊢∗ c.

In the context of LCFRS CYK parsing, the items of the parsing system are intermediate parsing
results:

Definition 3.3 (PLCFRS CYK intermediate parsing result).
Let G = ⟨N,T, V, P, S, q⟩ be a PLCFRS, A ∈ N a nonterminal, ρρρ ∈ Rangesdim(A) and m ∈ {n ∈
R | n ≥ 0}. m : [A,ρρρ] is called an intermediate parsing result or an item. m is called the weight
of the item. The set of all items for G is called ICYK.

The tuple of ranges ρρρ characterises all components in the span of A. m represents a logarith-
mically encoded probability that is used to determine the relative probability of different parses.

A set of deduction rules constrains the set of valid intermediate parsing results for an input
word w. The idea here is that a valid item should represent a parse for a part of w that is licensed
by the grammar. This property is proven in section 3.1.5. The full set of deduction rules for
PLCFRS CYK parsing is given in figure 3.2.

10Pfin denotes the powerset containing only finite sets.
11Note that Sikkel and Nijholt (1997) do not differentiate between different deduction rules but subsume all

deductions in a single set in the definition of P.
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Scan 0 : [A, ⟨⟨i, i+ 1⟩⟩] A is a POS tag of wi+1

Unary in : [B,ρρρ]
in+ | log(q(r))| : [A,ρρρ] r = A(ααα)→ B(ααα) ∈ P

Binary inB : [B,ρρρB ], inC : [C,ρρρC ]
inB + inC + | log(q(r))| : [A,ρρρA] ∃r ∈ P : (A(ρρρA)→ B(ρρρB)C(ρρρC)) ∈ Instances(r, w)

goal m : [S, ⟨⟨0 : |w|⟩⟩]

Figure 3.2: Weighted CYK deduction system for parsing w ∈ T ∗ with a PLCFRS ⟨N,T, V, P, S, q⟩.
RCYK = {Unary,Binary}, HCYK = {0 : [A, ⟨⟨i, i+ 1⟩⟩] | A is a POS tag of some wi+1}.

The deduction system works bottom-up. First Scan provides the axioms. These are the
terminating rules that have RHS ε. Then the derivation tree is traversed bottom-up. Unary and
Binary find ranges for rules of rank 1 or 2 respectively. Any rule instance where the pairs of
nonterminals and range tuples in the RHS have been found can be applied. Therefore, its LHS is
deduced. The contiguity constraint of the rule instances ensures that only elements can be chosen
that can be joined in a way that is compatible with the rule to deduce, i.e. adjacent elements on
the LHS are only deduced from adjacent and non-overlapping rule instances already found.

Definition 3.4 (PLCFRS-CYK parsing system).
The parsing schema PLCFRS-CYK is defined by the parsing system PCYK = ⟨ICYK, HCYK, RCYK⟩
for any PLCFRS G = ⟨N,T, V, P, S, p⟩ and any word w ∈ T ∗.

3.1.3 Chart Parsing

Natural language grammars are highly ambiguous. For a given input word w, a parsing schema
may give rise to a variety of items spanning different, possibly overlapping, portions of w. There
can be several unique sequences of deductions leading to a goal item for w. On the other hand,
different analyses can be based on a common sub-analysis for a part of w (Kallmeyer, 2010, chapter
3).

Chart parsing is a framework rooted in dynamic programming that allows to easily store inter-
mediate parsing results and to reuse them at any time for the deduction of new elements (Grune
and Jacobs, 2010, chapter 7). For this purpose, a table - called a chart C - is used. For CYK
parsing, where an intermediate parsing result [A, i, j] spans a projective substring of w, the table
can have three dimensions with the first dimension corresponding to a unique index for each non-
terminal. The second and third dimension have length |w| + 1 and correspond to the start and
end index of the item’s range. [A, i, j] would be represented by a mark in cell (index(A), i, j) of C
(Kallmeyer, 2010, chapter 3). The cell (index(S), 0, |w|) corresponds to the goal item.

Furthermore, a list called an agenda A is used. It consists of the items that are yet to be
checked for possible deductions in combination with the asserted items in C. Axioms and new
items found by deduction are added to A (Kallmeyer, 2010, chapter 3).

A recogniser can be converted into a parser by saving references with each entry in C that refer
to the items that were used to deduce it. In this way, one can retrieve the parse tree from the goal
item. The references are called backpointers (Kallmeyer, 2010, chapter 3).

In our context, intermediate parsing results can span more than one consecutive substring and
therefore a chart with three dimensions does not suffice. The number of dimensions needed is
determined by the fan-out of the grammar G. The maximum number of range borders is given by
2 · dim(G). When representing nonterminals in a separate dimension, the chart dimensionality is
1 + 2 · dim(G). The goal item then is (index(S), 0, |w|, n, n, ..., n, n) where n = |w|+ 1 is a special
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index used for those nonterminals A where dim(A) < dim(G). Since this does not allow for an
easy visualisation, I will represent C as a list containing intermediate parsing results.

3.1.4 Algorithm

A deductive engine can be used to deduce every valid item from the set of axioms, eventually
finding the goal item with the highest weight. This naive approach would be computationally
inefficient due to the large number of useless intermediate parsing results generated. Kallmeyer
and Maier (2010) give a strategy for fast exploration of the best goal item based on weighted
deductive parsing (Nederhof, 2003). It is reproduced in an adapted form in algorithm 3.2.

Algorithm 3.2 Weighted deductive CYK parsing for PLCFRS.
Input: a parsing system ⟨ICYK, HCYK, RCYK⟩ for a grammar G and a word w
Output: a filled chart containing the best goal item

1: A ← HCYK
2: while A ≠ ∅ do
3: x : I ← best item in A ▷ select the item with the lowest weight
4: A.remove(x : I)
5: C.add(x : I)
6: if I = [S, ⟨⟨0 : |w|⟩⟩] then
7: stop
8: else
9: for all y : I ′ in (all items deducible from x : I and from items in C) do

10: if ∄z with z : I ′ ∈ C ∪ A then
11: A.add(y : I ′)
12: else if ∃z with z : I ′ ∈ A then
13: A.remove(z : I ′)
14: A.add(min(y, z) : I ′)
15: end if
16: end for
17: end if
18: end while

In each step, the best item in the agenda x : I is written to the chart and checked for deducibility
of new items by combining with the items present on the chart. This amounts to retrieving all
y : I ′ such that C ∪ {x : I} ⊢ y : I ′ since no new elements can be generated purely from items on C
according to the logic of the algorithm. All newly generated items y : I ′ that are not yet present
in the agenda or on the chart are put on the agenda. If an item already exists on the agenda but
the newly generated one has a lower (i.e. better) weight, the weight gets updated with the lower
one.

By always retrieving the agenda item with the best score, the algorithm guarantees that the
first goal item derived is the best one (Knuth, 1977).

Example 3.5.
Let G be a PLCFRS characterised by the productions and probabilities in equation 3.2 with
LG = {aaa}.

number LHS RHS probability
r1 S(XY Z) → A(X,Y )B(Z) 0.1
r2 S(XY Z) → A(X,Z)B(Y ) 0.9
r3 A(X,Y ) → B(X)B(Y ) 1
r4 B(a) → ε 1

(3.2)
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For an ordered grammar, the algorithm can be optimised to avoid deriving elements with ranges
in their arguments that do not respect precedence. Furthermore, for trivial reasons, the algorithm
does not need to compute tuples of ranges that contain overlaps. Figure 3.3 shows the sequence
of parsing steps for the word aaa and PLCFRS G.

A C new items
B0:1

0 , B1:2
0 , B2:3

0 ∅
B1:2

0 , B2:3
0 B0:1

0

B2:3
0 B1:2

0 , B0:1
0. . . . A0:1,1:2

0

A0:1,1:2
0 B2:3

0 , B1:2
0. . . . , B

0:1
0. . . . A1:2,2:3

0 , A0:1,2:3
0

A1:2,2:3
0 , A0:1,2:3

0 A0:1,1:2
0 , B2:3

0. . . . , B
1:2
0 , B0:1

0 S0:3
|log(0.1)|

A0:1,2:3
0 , S0:3

|log(0.1)| A1:2,2:3
0 , A0:1,1:2

0 , B2:3
0 , B1:2

0 , B0:1
0

S0:3
|log(0.1)| A0:1,2:3

0 , A1:2,2:3
0 , A0:1,1:2

0 , B2:3
0 , B1:2

0. . . . , B
0:1
0 S0:3

|log(0.9)|

S0:3
|log(0.1)| S0:3

|log(0.9)|, A
0:1,2:3
0 , A1:2,2:3

0 , A0:1,1:2
0 , B2:3

0 , B1:2
0 , B0:1

0

Figure 3.3: CYK parse for word aaa and LCFRS G from equation 3.2 according to algorithm 3.2;
representing intermediate parsing results m : [A,ρρρ] as Aρρρ

m; the best result taken from the agenda is
underlined, the chart item(s) it combines with are . . . . . . . . . . . .underlined . . . . . .with . . . . . .dots; visualising backpointers
at the last step.

3.1.5 Soundness and Completeness

Up to this point, I assumed that the parser indeed does what it claims to do. But generally, parser
correctness has to be proven by showing soundness and completeness for the parsing algorithm
(Kallmeyer, 2010, chapter 3).

In the following, a recogniser algorithm A is generalised as a function on a grammar G and a
word w returning true or false. A class of grammars could be, for instance, the set of all CFGs or
in this case the set of all ordered, binary, gap-explicit, ε-free, terminal-restricted LCFRSs.

Definition 3.6 (Recogniser soundness, completeness, correctness).
Let A be a recogniser algorithm.

1. A is sound for a class of grammars G, iff for every grammar G ∈ G and every input word w,
it holds that A(G,w) = true ⇒ w ∈ LG.

2. A is complete for a class of grammars G, iff for every grammar G ∈ G and every input word
w, it holds that w ∈ LG ⇒ A(G,w) = true.

3. A is correct for a class of grammars G, iff A is sound and complete for G.

For a recogniser, soundness means that only the words of the language of the given grammar
are recognised as correct while completeness is defined by the fact that all of the words of the
language are recognised by the algorithm. If both properties hold, the system is called correct.

This notion can be extended to parsers. Here, A is understood as a function on a grammar G
and a word w ∈ LG returning a set of final syntactic representations (usually trees spanning the
input and rooted at S).

Definition 3.7 (Parser soundness, completeness, correctness).
Let A be a parsing algorithm.
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1. A is sound for a class of grammars G, iff for every G ∈ G, every input word w, ∀D ∈ A(G,w) :
D ∈ Dw

G.

2. A is complete for a class of grammars G, iff for every grammar G ∈ G and every input word
w, ∀D ∈ Dw

G : D ∈ A(G,w).

3. A is correct for a class of grammars G iff it is sound and complete for G.

For the deductive chart-parsing approach, the proof of correctness is two-fold:

1. proving soundness and completeness for G where A(G,w) tells the presence of a goal item in
the set of valid items (recogniser) or gives the set of valid goal items including backpointers
(parser) (Gómez-Rodríguez et al., 2008) and

2. showing that the deductive engine actually explores all possible deductions - or the best one
in case of weighted deductive parsing.

Usually, 1. is shown by proving a stronger result: soundness and completeness for the intermediate
parsing results as is shown in the following.

Corollary 3.8.

1. Given a fixed LCFRS G with the properties from section 3.1.1 and an input sentence w =
w1...wn: [A,ρρρ] iff w⟨:⟩(ρρρ) = ⟨w⟨:⟩ ρρρ[1] , ..., w⟨:⟩ ρρρ[|ρρρ|]⟩ ∈ yield(A).

2. The CYK-LCFRS parsing schema is correct for the class of all LCFRSs with the properties
given in Section 3.1.1.

Proof. Part 1 is proven via induction over the sum of lengths for the range tuple ρρρ (i.e. the number
of terminals the item spans) defined by s =

∑|ρρρ|
i=1 |ρρρ[i]|. This is inspired by the proof for CFG CYK

parsing given by Kallmeyer (2010, chapter 3).

1. Case s = 1:

(⇒) Given: [A,ρρρ].
The item must have form [A, ⟨⟨i− 1, i⟩⟩] since empty ranges do not occur.

i. If the item is an axiom, then by axiom definition, it holds that wi−1:i = wi ∈
yield(A).

ii. If the item was derived using Unary, the antecedent must have form [B, ⟨⟨i−1, i⟩⟩].
If the induction claim holds for the antecedent, then the Unary side-condition
claims the existence of rule A(X)→ B(X) for some X ∈ V . Thus, by definition of
the yield, it follows that ⟨wi⟩ ∈ yield(A). The induction claim must hold for the
antecedent B (by induction over the deduction sequence) since it must have been
derived either by another Unary or be an axiom because all valid items c must
satisfy HCYK ⊢∗ c and s cannot decrease by application of deductions rules.

(⇐) Given: There is some range ⟨i− 1, i⟩ such that ⟨wi⟩ ∈ yield(A). The definition of yield
allows two options:

i. Either there exists a rule A(wi)→ ε ∈ P . Then by the definition of HCYK it holds
that [A, ⟨⟨i− 1, i⟩⟩].

ii. Or there is some A(X) → B(X) ∈ P with X ∈ V such that wi ∈ yield(B). In the
same fashion as above, let us assume that [B, ⟨⟨i − 1, i⟩⟩]. Then it follows by the
Unary side-condition that [A, ⟨⟨i− 1, i⟩⟩].

2. Case s > 1:
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(⇒) Given: [A,ρρρ].
The item is not in HCYK since it spans more than one symbol.

i. If the item was derived via Binary from two items [B,ρρρB ], [C,ρρρC ], the induction
claim must hold for both antecedents since their individual range length sum must
be smaller (productions with empty ranges are not allowed). Thus, w⟨:⟩(ρρρB) ∈
yield(B) and w⟨:⟩(ρρρC) ∈ yield(C). Now, since by the side condition there exists an
instance A(ρρρ) → B(ρρρB)C(ρρρC), it follows that there is a composition function such
that w⟨:⟩(ρρρ) ∈ yield(A).

ii. If the item was derived via Unary from an item [B,ρρρ]: assume that the claim holds
for [B,ρρρ]. Since the side condition demanded the existence of a unary production
A(ααα)→ B(ααα), we can assert that also w⟨:⟩(ρρρ) ∈ yield(A). Now, by induction over the
deduction sequence, the claim must hold for [B,ρρρ] since there must be valid items
cx, cy, cz such that {cx, cy} ⊢Binary cz and {cz} ⊢∗ [B,ρρρ] because only Binary can
compose items with larger s than their antecedents.

(⇐) Given: There is a range tuple ρρρ with w⟨:⟩(ρρρ) ∈ yield(A). The definition of yield allows
two options:

i. There is some binary production
A(χA,1, ..., χA,dim(A))→ B(χB,1, ..., χB,dim(B))C(χC,1, ..., χC,dim(C)) such that w⟨:⟩(ρρρ)

was composed from the elements of a yield w⟨:⟩(ρρρB) ∈ yield(B) and w⟨:⟩(ρρρC ) ∈
yield(C) according to the production. From this composition follows that there is
a rule instance A(ρρρA)→ B(ρρρB)C(ρρρC). Furthermore, since there are no empty non-
terminal arguments allowed, both of these yields span a number of tokens smaller
than s. Thus, by induction claim there must be [B,ρρρB ] and [C,ρρρC ]. Therefore,
Binary gives [A,ρρρ].

ii. Or there is a unary production A(ααα) → B(ααα) and also w⟨:⟩(ρρρ) ∈ yield(B). Like
above, we can assume that the induction claim holds for this antecedent. Therefore,
[B,ρρρ] and by use of the side-condition also [A,ρρρ].

Part 2 follows from this result. The deduction schema is correct since for every LCFRS G and
for every w,

1. if [S, ⟨⟨0, |w|⟩⟩] it follows that ⟨w0:|w|⟩ = ⟨w⟩ ∈ yield(S) i.e. w ∈ LG (sound) and

2. if w ∈ LG, i.e. ⟨w⟩ ∈ yield(S), then [S, ⟨⟨0 : |w|⟩] (complete).

Correctness of the parser built by saving backpointers for each item follows directly from this
proof in combination with definition 2.29. The items represent nodes of the tree, an item’s non-
terminal is its node label and the result of the n-yield function is given by the range tuple of the
item.

A proof of correctness for the weighted deductive parsing algorithm for finding the best scoring
derivation (algorithm 3.2) is given by Knuth (1977) for systems where the weight is non-decreasing.
This is the case for the deduction rules given in figure 3.2.

3.1.6 Complexity

The separation of parsing algorithm and schema allows for a concise examination of complexity.
Given a grammar G and an input word w one has to consider the maximum number of possible
deduction rule applications (Kallmeyer, 2010, chapter 3). This depends on the most complex rule,
in this case: Binary with A(ρρρA)→ B(ρρρB)C(ρρρC).
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There is a maximum of dim(G) variables and therefore 2 · dim(G) range boundaries for each
of the antecedents. For two variables adjacent in a LHS argument, the number of independent
range boundaries reduces by one since for ranges ρ1, ρ2 the concatenation ρ1 ◦ ρ2 must be defined,
i.e. the right boundary of ρ1 is the left boundary of ρ2. In the worst case, dim(A) = dim(B) =
dim(C) = dim(G) and each component of the LHS contains exactly two variables. More adjacent
variables would lead to a greater boundary reduction. Each LHS component now gives rise to 3
independent boundaries, which means that the total maximum number of boundaries is 3 ·dim(G).
For a word of length n this leads to n3·dim(G) possibilities to choose these boundaries and thus a
time complexity of O(n3·dim(G)) for the algorithm (Evang, 2011).

Note that the time complexity of parsing LCFRSs is fundamentally dependent on the maximum
number of discontinuous blocks for a nonterminal. Søgaard and Maier (2008) show that for a typical
treebank LCFRS fan-out is around 3, which makes CYK parsing very computationally expensive.

3.1.7 Related Work

Several strategies were explored to speed up LCFRS CYK chart parsing. Kallmeyer and Maier
(2013) use A∗ search. A coarse-to-fine approach was presented by Van Cranenburgh (2012) while
Angelov and Ljunglöf (2014) propose a new cost estimation for ranking parser items. Kallmeyer
(2010, chapter 7) presents several approaches for optimisations on LCFRS like optimal binarisation
and elimination of useless rules. Furthermore she explains the use of filters during parsing that
reject items that cannot lead to a goal item. Kallmeyer and Maier (2009) present an incremental
Earley parser for SRCG.

Maier et al. (2012) focus on optimizing the extraction from treebanks by limiting the fan-out
of the resulting grammar to 2. They note that in the DPTB, which features constituents with
at most three discontinuous blocks, the overwhelming majority of the cases with three blocks is
caused by punctuation. They show that by changing punctuation annotation the extraction of a
2-LCFRS with minimal informational loss is possible.

3.2. Transition-Based Parsing

Parsing with transitions is based on a pseudo-deterministic approach and widely used for depen-
dency parsing. The parser traverses the input from left to right and performs one local action from
a set of possible transitions at each step to incrementally build a graph. In the case of constituent
parsing, this graph is a tree. While chart parsers handle ambiguities by maintaining multiple anal-
yses in parallel through the use of dynamic programming and narrowing down the search space
with a statistical model, transition-based parsers maintain only one (incomplete) analysis of the
input sequence at a time. This is called a greedy strategy. They usually utilise a classifier trained
on treebank-data to predict the next action when faced with a choice (Nivre, 2008). While this
narrows down the search space to the one best scored action at each step, it has been shown that
by using neural context-aware classifiers, this approach can yield state-of-the-art results.12

In the following subsections, I will first provide some necessary prerequisites and define transition-
based parsing formally. Then, a short outline of the traditional projective constituent shift-reduce
parser is given, followed by an exploration of two extensions of this approach for discontinuous
constituent parsing: Swap and Gap.

3.2.1 Transition Systems

The following definitions for transition systems and transition sequences are based on Nivre (2008).
They were introduced for dependency parsing but are, with small modifications, applicable to

12See Section 6.3 for a comparison of results for discontinuous constituent parsing.
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constituent parsing.

Definition 3.9 (Transition system).
Let T be an alphabet of terminals and N an alphabet of nonterminals. A transition system wrt.
T and N is a 5-tuple S = ⟨C, T , σ, F, d⟩, where

1. C is a set of configurations,

2. T is a set of transitions, which are (partial) functions τ : C → C,

3. σ is an initialisation function that maps an input word to a configuration, i.e. σ : T ∗ → C,

4. F ⊆ C is a set of terminal configurations.

5. d is an output function that maps a terminal configuration to a syntactic representation
labelled over the signature N .

The use of the terms terminal and nonterminal is disconnected from any formal grammar here
and only occurs to allude to their function as the input sequence alphabet and as the signature of
the resulting tree.

Usually, a configuration possesses a stack S that contains the constructed constituents and a
buffer B of remaining words. S and B can be thought of as ordered lists of elements where access
is only allowed on one end. Only the top element can be retrieved. For S, a new element can be
pushed onto the structure to constitute the new top while B is read-only. Usually, S is written
with its top facing to the right while B has its top on the left side. The symbol | aids in marking
the top element. S|s denotes a stack where s is the top element and S is the (possibly empty) rest
of the stack. b|B denotes a buffer with b as its top element. The initialisation function σ returns
an initial configuration where the input sentence words are contained in the buffer and where the
stack is empty. The stack and the buffer can be written down in list notation [x1, ..., xn] which is
done to specify the initial buffer configuration. [ ] denotes an empty structure.

The use of a stack and a buffer originates in push-down automata (PDA), a design of automata
that is equivalent to CFGs (Hopcroft et al., 2007, chapter 6). The transitions can also be expressed
as a formal deduction system. Then, σ(w) for an input sequence w serves as an axiom. The goal
of the transition system is to construct a terminal configuration by means of transitions. Since the
deductions have only one antecedent item, deduction sequences are purely linear. Therefore, the
following notation differs from the inference relation given in definition 3.2 in that it is not closed
under addition of antecedents.

Definition 3.10 (Transition derivability relation).
Let T be an alphabet of terminals and N an alphabet of nonterminals. Let S = ⟨C, T , σ, F, d⟩ be
a transition system wrt. T and N . Let c, c′ ∈ C be configurations.

• The relation c⇒
τ
c′ holds iff c′ = τ(c) for some τ ∈ T

c⇒
τ
c′ reads: c′ is directly derivable from c using τ .

• The relation c⇒ c′ holds iff there exists any transition τ ∈ T such that c⇒
τ
c′.

c⇒ c′ reads: c′ is directly derivable from c.

• ∗⇒ is the reflexive and transitive closure of ⇒.
c

∗⇒ c′ reads: c′ is derivable from c.

For c1 ⇒ c2, c2 ⇒ c3 we conventionally write c1 ⇒ c2 ⇒ c3. This also holds for ⇒
τ

and ∗⇒.

Definition 3.11 (Transition sequence).
Let T be an alphabet of terminals and N an alphabet of nonterminals. Let S = ⟨C, T , σ, F, d⟩
be a transition system and w ∈ T ∗ a word. A transition sequence for w in S is a sequence
c0:n = c1, c2, ..., cn of configurations with n ∈ N, such that
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1. c1 = σ(w),

2. cn ∈ F ,

3. c1 ⇒ c2 ⇒ ...⇒ cn

Definition 3.12 (Valid configuration).
Let T be an alphabet of terminals and N an alphabet of nonterminals. Let S = ⟨C, T , σ, F, d⟩ be
a transition system wrt. T and N and w ∈ T ∗ a word. A configuration c ∈ C is called valid for w
iff there exists a transition sequence c0:n for w in S such that c = ci for some i ∈ N, 1 ≤ i ≤ n.

Definition 3.13 (Parse).
Let T be an alphabet of terminals and N an alphabet of nonterminals. Let S = ⟨C, T , σ, F, d⟩ be
a transition system wrt. T and N and c0:n a transition sequence for w ∈ T ∗ in S. d(cn) is called
the parse assigned to w by c0:n

Oracles act as a system for searching and predicting the next transition given a configuration.
Nivre (2008) defines oracles in the following way:

Definition 3.14 (Oracle).
Let T be an alphabet of terminals and N an alphabet of nonterminals. Let S = ⟨C, T , σ, F, d⟩ be
a transition system wrt. T and N .

1. An oracle o for S is a function o : C → T .

2. A transition sequence c0:n for some word w ∈ T ∗ in S is licensed by o iff for every i ∈
{1, ..., n− 1} it holds that ci+1 = (o(ci))(ci).

In data-driven parsing, the oracle has access to the gold trees of a given corpus and can base its
predictions on them. A scorer is trained with the goal of approximating the oracle. It can take the
form of a neural classifier and receives input features at each step that are associated with certain
elements in the configuration.13

Given a transition system S = ⟨C, T , σ, F, d⟩ wrt. an alphabet of terminals T and an alphabet
of nonterminals N and an oracle o for S, the following simple algorithm for deterministic parsing
is defined (Nivre, 2008):

Algorithm 3.3 Parse(w)
Input: a sentence w ∈ T ∗

Output: a parse assigned to w
1: c← σ(w)
2: while c /∈ F do
3: c← (o(c))(c)
4: end while
5: return d(c)

The benefit of this formal characterisation is the separation of oracles, transitions and configu-
rations which facilitates the analysis of the complexity and other formal properties of the system.
According to Nivre (2008) one can usually assume that o(c) and τ(c) have constant time com-
plexity for all transitions and configurations. Therefore, the complexity of the transition system is
given by the worst-case maximum length of transition sequences for an input sentence. The space
complexity is characterised by the maximum size of a configuration since the system only needs to
store one configuration at a time.

The examination of correctness differs from that of grammar-based parsers. Correctness for a
transition system is characterised not by a set of syntactic representations for a specific grammar

13A more detailed account of scorers is given in section 3.2.7.



30

(i.e. its tree language) but by a class of syntactic representations (e.g. the set of all possible
labelled trees). Nivre (2008) gives the following definition of soundness and completeness which I
slightly modified to account for the tree labelling.

Definition 3.15 (Soundness, completeness, correctness).
Let T be an alphabet of terminals and N an alphabet of nonterminals. Let S = ⟨C, T , σ, F, d⟩ be
a transition system wrt. T and N .

1. S is sound for a class D of syntactic representations, iff for every word w ∈ T ∗ and every
transition sequence c0:n for w in S, it holds that d(cn) ∈ D.

2. S is complete for a class D of syntactic representations iff for every syntactic representation
Dw ∈ D for some word w, there is a transition sequence c0:n for w in S such that d(cn) = Dw.

3. S is correct for a class D of syntactic representations iff it is sound and complete for D.

For the class of range-labelled trees correctness of the transition system ensures that every tree
can be built using the system and that every syntactic representation built is indeed formally a
range-labelled tree. Additionally, to match the notion of parser correctness given in definition 3.7,
it needs to be proven that the optimal steps predicted by the oracle lead indeed to the desired tree
for an input.

Following Goldberg and Nivre (2012a) one can define oracle correctness as follows:

Definition 3.16 (Oracle correctness).
Let T be an alphabet of terminals, N an alphabet of nonterminals and S = ⟨C, T , σ, F, d⟩ be
a transition system wrt. T and N that is correct for a class D of syntactic representations and
o : C → T an oracle for S.
o is correct iff for every word w ∈ T ∗ and a syntactic representation Dw ∈ D for w the transition
sequence c0:n for w licensed by o assigns exactly the parse d(cn) = Dw.

Note that a proof of correctness can only be done for the oracle and not for the final model
trained to approximate the oracle. Its properties rely crucially on the quality of the neural model
and its learning algorithm.

3.2.2 Comparing Chart Parsing and Transition-Based Parsing

In this section I will point out several differences between chart parsers and transition-based parsers.
In chart parsers the items are intermediate parsing results which represent a partial analysis. One
or more items can be used to deduce a new analysis for some part of the input. In a transition-
based system the items are configurations that in turn contain all available partial analyses for
the input. They can be seen as a data structure that represents the state of analysis at a certain
time-step, comparable to a view of chart and agenda. But unlike in chart-parsing, analyses cannot
conflict with each other.

A deduction can be used to alter the inner structure of the item that restricts which elements
are available for derivation (e.g. shift an element from the buffer to the stack) or to derive a
new partial analysis from certain elements in the item. When deriving a new partial analysis
from elements using a transition, they are “used up” and no longer available for future derivation
steps. Thus, by design there is no derivational ambiguity in the retrieved analysis. This reduces
the formalism’s complexity. The parsing process works bottom-up and the transition system can
be seen as a framework to keep track of active partial analyses which have not been used in a
derivation yet.

While both approaches are usually data-driven, the weighted CYK chart parser works with an
explicitly formalised grammar that was extracted from a treebank in a preceding step. Weights are
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assigned to productions based on their observed frequency of occurrence. Transition-based parsers
are generally built on a neural network framework. They are trained on a treebank and learn to
replicate the patterns found in it. The transition system specifies the order and manner in which
this replication takes place (e.g. bottom-up retrieval of derivation steps, left-to-right processing).
Thus, one can view the model as implicitly learning a weighted grammar that licenses the treebank.
Adopting this view, the model can be said to assign the highest score to the chain of actions that
leads to the analysis with the best overall weight.

Note however that while a chart-parser based on an extracted grammar can only apply deriva-
tions that were observed during the extraction process on a corpus, a neural approach yields
probabilities for all derivations allowed by the transition system including those that it did not ob-
serve during training. This has two consequences: on the one hand, it greatly expands the field of
potential parsing errors far beyond the scope of derivational ambiguity inherent to grammar-based
approaches. On the other hand, it enables the parser to generalise over constituents that exhibit
a similar behaviour and to predict the correct action if faced with a context that is only attested
for a portion of these constituents in the training data.

In contrast to the production weights used in weighted chart parsing, the likelihood of a pro-
duction in a transition-based neural model is not independent of surrounding items. A prediction
is computed using a complex neural function based on features like items present on the stack and
the buffer or previously derived items. This mitigates the disadvantage that arises from pursuing
a greedy 1-best strategy. The parameters of this function are adjusted during training to pro-
duce higher scores for derivations found in the gold derivation trees. Improbable derivations are
penalised by the cost-function of the learning algorithm.

3.2.3 Standard Shift-Reduce Projective Parsing

Shift-reduce parsing is a bottom-up left-to-right parsing method for CFGs. It serves as the basis
for most transition-based parsers. Here, a configuration is a tuple ⟨S,B⟩ with a stack S and a
buffer B. The configuration is visualised in figure 3.5.

The stack consists of derived constituents usually characterised by a nonterminal and a tuple
of pointers to its daughters. The goal is to construct a single item via transitions from which an
ordered derivation tree can be recovered. This mirrors the use of backpointers in charts.

Definition 3.17 (Recursive labelled ordered tree).
Let X be an alphabet of labels.

1. A symbol A ∈ X is a recursive ordered tree labelled over signature X, more specifically a leaf.

2. A tuple ⟨A1,D1⟩ is a recursive ordered tree labelled over signature X if

(a) A1 ∈ X,

(b) D1 is a tuple of recursive ordered trees labelled over signature X and

(c) there is no cyclic sequence of recursive ordered trees ⟨A1,D1⟩, ⟨A2,D2⟩, ..., ⟨An,Dn⟩
where D[j]

i = ⟨Ai+1,Di+1⟩ for some j ∈ {1, ..., |Di|} for all i ∈ {1, ..., n − 1} and
⟨An,Dn⟩ = ⟨A1,D1⟩.

3. Nothing else is a recursive ordered tree labelled over signature X.

The notation in definition 3.17 is an alternative to the traditional graph notation ⟨V, ◁,≺, v̂, λ⟩
of an ordered tree with a node labelling over signature X introduced in section 2.1. It is the
common way to implement trees as a data structure. A recursive ordered tree ⟨A,D⟩ can be
likewise treated as an ordered tree with a root node that is labelled with A and has daughters
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defined by the subtrees in D for which precedence is determined by their position in D. In the
following, I will use the two notations interchangeably.

The transition system of Sagae and Lavie (2005) is used as the foundation for many transition-
based constituent parsers. They work with binarised trees with headedness information.14 Coavoux
and Crabbé (2017a) give the following reduced set of transitions for unlexicalised parsing:

1. Shift moves the first element from the buffer onto the stack.

2. ReduceUnary-X creates a new constituent, removes the top element from the stack, assigns
it as the single daughter of the new constituent and puts the new constituent onto the stack.

3. Reduce-X creates a new constituent, removes the two topmost elements from the stack,
assigns them as the daughters of the new constituent and puts the new constituent onto the
stack.

The formalisations as deductions are presented in figure 3.4. Cross and Huang (2016b) use a
similar set of transitions that allows non-binary trees.

axiom
⟨ [ ], [w1, ..., wn] ⟩

Shift ⟨ S, wi|B ⟩
⟨ S|wi, B ⟩

Reduce-X ⟨ S|s1|s0, B ⟩
⟨ S|⟨X, ⟨s1, s0⟩⟩, B ⟩

ReduceUnary-X ⟨ S|s0, B ⟩
⟨ S|⟨X, ⟨s0⟩⟩, B ⟩

goal ⟨ [ROOT ], [ ] ⟩

Figure 3.4: Shift-reduce as deductions, T SR = {Shift,Reduce-X,ReduceUnary-X}.

Definition 3.18 (Shift-reduce transition system).
A Shift-Reduce transition system for an alphabet of terminals T and an alphabet of nonterminals
N is a 5-tuple SSR = ⟨CSR, T SR, σ, F, d⟩ where

1. CSR = {⟨S,B⟩ | ∀c ∈ S ∪B : c is a binary ordered tree with leaf labels from T and
internal labels from N},15

2. T SR is the set of transitions defined for CSR as given in figure 3.4,

3. σ(w0:n) = ⟨[ ], [w1, ..., wn]⟩ for every w0:n ∈ T+,

4. F = {⟨[ROOT], [ ]⟩ | ROOT is a binary orderd tree with leaf labels from T and internal
labels from N} and

5. d gives the sole element in S for every ⟨S,B⟩ ∈ F .

Example 3.19.
Figure 3.6 shows an example transition sequence for the sentence the man took the book with the
derivation tree depicted in figure 1.1.

14A discussion on the matter of head-information and lexicalisation is given in section 3.2.6.
15In a slight abuse of notation, set operators are used here to refer to all elements in the two sequences.
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...

Stack S Buffer B

wi wi+1 wi+2 ...s2 s1 s0

stack top

local region

Figure 3.5: Illustration of a configuration in CSR. Transitions involve changes to the local part of
the configuration (dashed line). Illustration reproduced from Coavoux and Cohen (2019).

Step Stack Buffer Action

0 the, man, took, the, book Shift

1 the man, took, the, book Shift

2 the, man took, the, book Reduce-NP

3 ⟨NP, ⟨•, •⟩⟩ took, the, book Shift

4 ⟨NP, ⟨•, •⟩⟩, took the, book ReduceUnary-Verb

5 ⟨NP, ⟨•, •⟩⟩, ⟨Verb, ⟨•⟩⟩ the, book Shift

6 ⟨NP, ⟨•, •⟩⟩, ⟨Verb, ⟨•⟩⟩, the book Shift

7 ⟨NP, ⟨•, •⟩⟩, ⟨Verb, ⟨•⟩⟩, the, book Reduce-NP

8 ⟨NP, ⟨•, •⟩⟩, ⟨Verb, ⟨•⟩⟩, ⟨NP, ⟨•, •⟩⟩ Reduce-VP

9 ⟨NP, ⟨•, •⟩⟩, ⟨VP, ⟨•, •⟩⟩ Reduce-Sentence

10 ⟨Sentence, ⟨•, •⟩⟩

Figure 3.6: Shift-Reduce parse for the man took the book producing the tree from Figure 1.1.

For an input and a parse tree to derive, there exists only one transition sequence. If the topmost
element’s root v0 is the unary daughter of another constituent or if v0 and the second topmost
element’s root v1 represent a gold constituent, a reduction must take place. If not, Shift must be
performed. Shifting when elements are reducible would move a new item onto the stack making v0

inaccessible. From this step on, the top of the stack can only be occupied by elements succeeding
v0 in the precedence relation. This minimal ambiguity makes deriving an oracle a trivial task.

The elements in a valid configuration for a word w represent a forest of derivation trees that
are subtrees of some possible tree Dw for w. The roots of the forest elements are the surface
elements on the stack and in the buffer. They represent a tree-cut of Dw. A Reduce transition
is a transition from a tree-cut v1, ..., vi, vi+1, ..., vm to another tree-cut v1, ..., vp, ..., vm where vp

is the parent of vi, vi+1. This illustrates why no two conflicting analyses of constituents can co-
occur in this framework. Items dominated by an element in the current tree-cut are not present
at surface-level in the configuration and cannot be used to compose alternate analyses.

The following definition of a tree-cut is based on Versley (2014).

Definition 3.20 (Tree-cut).
Let D = ⟨V, ◁, v̂⟩ be a tree. A tree-cut in D is a sequence v1, ..., vn with vk ∈ V for all k ∈ {1, ..., n}
for some n ∈ N such that for all paths from v̂ to a leaf, exactly one node from the path is contained
in the sequence.
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Definition 3.21 (Partial parse).
Let T be an alphabet of terminals and w ∈ T ∗ a word. A partial parse for w is an ordered forest
D0:n where there exists some tree Dw for w such that the roots of D1, ..., Dn are a tree-cut in Dw

and such that D1, ..., Dn are subtrees of Dw.

Example 3.22.
Figure 3.7 shows two possible tree-cuts in a tree. These demonstrate the reduction of two nodes
in a tree-cut: Verb and NP in the left tree and their parent VP in the right tree.

Sentence

NP

the man

VP

Verb

took

NP

the book

Sentence

NP

the man

VP

Verb

took

NP

the book

Figure 3.7: Two possible tree-cuts (underlined) in a projective tree. The tree is taken from Chomsky
(1956).

Note that this set of transitions cannot predict ε-productions. There is no deduction rule to
predict empty leaves between elements or to reduce them. Therefore, the initialisation function
also does not accept the empty word. One could add a configuration with empty stack and buffer
to the set of terminal configurations to enable the latter but this shall not be of any concern here
as the corpora at hand do not feature empty leaves.

What is significant, however, is this system’s inability to deduce crossing edges. It can only
reduce adjacent elements into constituents. Several strategies were developed to solve this problem:
new transitions like Swap and Gap reorder items and make discontinuous parts of a constituent
adjacent in order to reduce them. In the following, I will discuss these approaches in more detail.

3.2.4 Reordering with the Swap Action

Versley (2014) was the first to adapt the Swap reordering action from dependency parsing to
constituent parsing. The underlying idea is that for every non-projective tree, there is a projective
tree that can be constructed by reordering the input words. This projective tree can be parsed with
traditional methods. Swap can be used to change the order of two elements and thus allows for
out-of-order processing. In the following, this approach will be referred to as Shift-Reduce-Swap
or SR-Swap.

Versley (2014) uses an easy-first approach inspired by Goldberg and Elhadad (2010) where a
parsing action or a Swap action can occur anywhere in an input string based on the prediction
of a scorer. Maier (2015) adapted the Swap action to the shift-reduce transition system. I will
outline this approach in more detail.

Discontinuous trees are not ordered (cf. definition 2.29). Only the leaves have the range
precedence relation <range defined on them that describes the surface order of the input tokens.
Therefore, we need to modify the definition of a transition constituent for discontinuous constituent
parsing. The list of daughters for a constituent no longer needs to be ordered and can therefore
be defined as a set.

Definition 3.23 (Recursive unordered tree).
Let X be a set of labels.

1. A symbol A ∈ X is a recursive unordered tree labelled over signature X, more specifically a
leaf,
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2. A tuple ⟨A1,D1⟩ is a recursive unordered tree labelled over signature X if

(a) A1 ∈ N ,

(b) D1 is a set of recursive unordered trees labelled over signature X and

(c) there is no cyclic sequence of recursive unordered trees ⟨A1,D1⟩, ⟨A2,D2⟩, ..., ⟨An,Dn⟩
such that ⟨Ai+1,Di+1⟩ ∈ Di for i ∈ {1, ..., n− 1} and ⟨An,Dn⟩ = ⟨A1,D1⟩.

3. Nothing else is a recursive unordered tree labelled over signature X.

This notation is equivalent to the graph-based definition ⟨V, ◁, v̂, λ⟩ of an unordered labelled
tree and the two notations will be used interchangeably within the following paragraphs. The
Reduce-X and ReduceUnary-X transitions are modified accordingly to reflect the new notation.
Furthermore, the parser introduced in Maier (2015) also marks the lexical head of a constituent. I
omit this aspect for reasons of brevity.

Swap ⟨ S|s1|s0, B ⟩
⟨ S|s0, s1|B ⟩

Figure 3.8: Swap transition.

The central innovation is the introduction of the Swap transition shown in figure 3.8. Using
this transition, it is possible to derive discontinuous constituents by reordering items such that for
two elements that have to be reduced, every element in between that blocks this reduction by not
being a sister node is moved to a different position. The SR-Swap transition system is formally
defined as follows:

Definition 3.24 (SR-Swap transition system).
A Shift-Reduce-Swap transition system for an alphabet of terminals T and an alphabet of
nonterminals N is a 5-tuple SSRS = ⟨CSRS, T SRS, σ, F, d⟩ where

1. CSRS is the set of all configurations ⟨S,B⟩ composed of partial ε-free binary range-labelled
trees over N ,

2. T SRS = {Shift,Reduce-X,ReduceUnary-X,Swap} the set of transitions defined on CSRS,

3. σ(w0:n) = ⟨[ ], [⟨0, 1⟩, ..., ⟨n− 1, n⟩]⟩ for every w0:n ∈ T+,

4. F = {⟨[ROOT], [ ]⟩ | ROOT is an ε-free binary range-labelled tree over N} and

5. d retrieves the tree from the sole element in S for every ⟨S,B⟩ ∈ F .

Example 3.25.
Figure 3.9 shows an example transition sequence for the sentence Darüber muß nachgedacht werden
and the derivation tree depicted in figure 1.3.

It is straightforward to see that one can apply different transitions to retrieve the same result.
More specifically, in figure 3.9 a Swap at step 2 would have already brought the configuration into
a form where reducing the tree-cut would be possible with the standard set of transitions. Indeed,
the possibility to put items from the stack back onto the buffer leads to significant ambiguity and
even allows for looping behaviour by alternating between Shift and Swap transitions. This poses
a challenge for defining oracles that lead to an optimally short transition sequence.
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Step Stack Buffer Action
0 Darüber1, muß2, nachgedacht3, werden4 Shift
1 Darüber1, muß2, nachgedacht3, werden4 Shift
2 Darüber1, muß2, nachgedacht3, werden4 Shift
3 Darüber1, muß2, nachgedacht3, werden4 Swap
4 Darüber1, nachgedacht3 muß2, werden4 Reduce-VP
5 ⟨VP, {•, •}⟩ muß2, werden4 Shift
6 ⟨VP, {•, •}⟩, muß2 werden4 Shift
7 ⟨VP, {•, •}⟩, muß2, werden4 Swap
8 ⟨VP, {•, •}⟩, werden4 muß2 Reduce-VP
9 ⟨VP, {•, •}⟩ muß2 Shift
10 ⟨VP, {•, •}⟩, muß2 Reduce-S
11 ⟨S, {•, •}⟩

Figure 3.9: Example parse using Swap transition for Darüber muß nachgedacht werden with tree
shown in figure 1.3, POS tags omitted, indices given alongside tokens instead of ranges.

Swap Loops Several suggestions have been made for restricting the application of transitions
to reduce ambiguity. A straightforward restriction is to prohibit Swap loops by ensuring that two
elements cannot be swapped twice. For this, Maier and Lichte (2016) define the following order.

Definition 3.26 (Indices of ranges).

1. Indrange : Ranges→ P(N) is defined as ⟨a, b⟩ 7→ {a+ 1, ..., b}.

2. Let N be an alphabet. Let D = ⟨V, ◁, v̂, λ⟩ be a range-labelled tree over N . IndD : V → P(N)
gives the set of all indices dominated by a node:

v 7→ {i | ∃u ∈ V : v ◁∗ u, u is a leaf, i ∈ Indrange(λ(u))}.

Definition 3.27 (Leftmost index ordering).
Let D0:n be a partial parse for w with Di = ⟨Vi, ◁, v̂i, λ⟩ for every i ∈ {1, ..., n}. <ind is defined as
a strict total order on the elements of D0:n:

Di <ind Dj :⇔ min(IndDi(v̂i)) < min(IndDj (v̂j))

Now, for two trees on the stack s1, s0 Swap is only allowed if they satisfy s1 <ind s0 as shown
in the modified deduction rule in figure 3.10. This is the case for all elements in the initial order.
If Swap is performed, this changes the order of s1, s0 in the configuration. Since s0 <ind s1 cannot
be fulfilled, Swap cannot be performed a second time for these two elements.

Swap ⟨ S|s1|s0, B ⟩
⟨ S|s0, s1|B ⟩

s1 <ind s0

Figure 3.10: Swap transition standard condition.

Eager Swap Nivre (2009) and Nivre et al. (2009) outline two strategies for reducing transition
sequence lengths for Swap in dependency parsing: eager swap and lazy swap. They were adapted
for constituent parsing by Versley (2014). These are conditions concerning oracle extraction. The
oracle has access to the gold tree and is constructed to yield only partial analyses of the gold tree.
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Therefore, in the following, trees in the deduction rules are simply treated as their roots, i.e. as
nodes in the gold tree.

The idea of the Swap transition is to convert the input sequence into a projective order, or
in other words, to an order where the target derivation tree can be recovered by reducing only
adjacent elements. Therefore eager swap restricts the Swap transition to cases where the two
elements in consideration are not in a projective order. It prohibits swapping when a Swap would
be unnecessary to retrieve the tree. The quest of Versley (2014) is to define a desirable order for
every tree-cut that allows to parse the elements projectively. For this, he defines the following
property.

Definition 3.28 (◁-compatibility).
Let D = ⟨V, ◁, v̂⟩ be a tree. A node ordering ≺⊆ V × V defined on all pairs of nodes that co-occur
in some tree-cut of D is called ◁-compatible iff for v, v′ ∈ V with v ◁∗ v′ and u, u′ ∈ V with u ◁∗ u′

it holds that u ≺ v ⇒ u′ ≺ v′.

Note that this is equivalent to conditions 3.(b) and 3.(c) for the linear precedence relation of
an ordered tree given in definition 2.10.

Versley (2014) shows that sorting the leaves of a tree in a ◁-compatible order ≺ makes it
possible to find a derivation using standard transition sets for projective parsing. This stems from
the observation that reducing a ≺-ordered tree-cut yields another ≺-ordered tree-cut. Thus, no
crossing edges are encountered and no reductions of non-adjacent elements are necessary.

Corollary 3.29.
Let ⟨V, ◁, v̂⟩ be a tree, ≺ a ◁-compatible order and v1, ..., vn a ≺-ordered tree-cut. Reducing some
elements vi, vi+1 with i ∈ {1, ..., n−1} to p ∈ V with p◁vi and p◁vi+1 results in another ≺-ordered
tree cut v1, ..., vi−1, p, vi+2, ..., vn.

Proof. Assumption: v1, ..., vi−1, vi, vi+1, vi+2, ..., vn is ≺-ordered and there is p ∈ V such that
p ◁ vi, p ◁ vi+1. In particular this means that vi−1 ≺ vi ≺ vi+1 ≺ vi+2. If p ≺ vi−1 then ◁-
compatibility of ≺ demands that also vi ≺ vi−1 which contradicts the assumption. Therefore, it
must hold that vi−1 ≺ vi. Likewise, if vi+2 ≺ p then per ◁-compatibility of ≺ it would also hold that
vi+2 ≺ vi+1 which contradicts the assumption. Therefore p ≺ vi+2. Thus, v1, ..., vi−1, p, vi+2, ..., vn

is ≺-ordered.

A generalisation to non-binary trees is straightforward. The precedence order <range on leaves
can be naturally extended to a partial ◁-compatible order for internal nodes in the following way
(Versley, 2014):

v1 <N v2 :⇔ ∀u1, u2 ∈ V : (v1 ◁
∗ u1 ∧ v2 ◁

∗ u2 ∧ u1 and u2 are leaves)⇒ u1 <range u2 (3.3)

Note however that this does not suffice for nonterminals v1, v2 with intertwined leaves since in
such a case neither v1 <N v2 nor v2 <N v1. To solve this issue, one can instead extend <range to a
◁-compatible order ≺ by defining a standard descendent for internal sister nodes to base the order
on. This way, <N is respected locally, i.e. for two sister nodes v1, v2 it holds that v1 <N v2 entails
v1 ≺ v2.

Versley (2014) works with a lexicalised model. His trees provide a function h : V → V that
gives the head daughter for each node. Therefore he suggests recursively assigning the head leaf
to an internal node:

h∗(v) :=

v if v is a leaf,

h∗(h(v)) otherwise.
(3.4)

Now, the order <h defined on all tree-cuts can be characterised as follows:
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v1 <h v2 :⇔

if ∃p ∈ V : p ◁ v1, p ◁ v2 and h∗(v1)<range h
∗(v2) or

if ∃v′
1, v

′
2 ∈ V : v′

1 ◁
∗ v1, v

′
2 ◁

∗ v2 and v′
1 <h v

′
2.

(3.5)

The actual choice of leaf is arbitrary as Versley (2014) notes. One could likewise use leftmost
index ordering as the base:

v1 <G v2 :⇔

if ∃p : p ◁ v1, p ◁ v2 and v1 <ind v2 or

if ∃v′
1, v

′
2 : v′

1 ◁
∗ v1, v

′
2 ◁

∗ v2 and v′
1 <G v

′
2.

(3.6)

Maier (2015) extracts a projective ordering by use of post-order traversal on the tree. Post-
order traversal on an ordered binary tree retrieves a sequence of all nodes by starting with the root
node and for every node recursively traversing 1) through the left daughter, 2) through the right
daughter and 3) appending the node itself to the sequence. In an ordered tree, the local order of
node children is provided with the tree. Here, leftmost index ordering <ind is used instead.

Algorithm 3.4 shows how to extract a post-order sequence from a tree. <G is then defined by
precedence in the extracted sequence. It can be seen that <G as defined by equation 3.6 entails
the relation extracted from algorithm 3.4. Note however that algorithm 3.4 also defines an order
for nodes that stand in the dominance relation. This does not influence parsing since two such
nodes never co-occur in a valid parsing configuration.

Algorithm 3.4 PostOrder(r)
Input: a binary tree identified by its root node r
Output: a sequence of nodes

1: if r is leaf then
2: return [r]
3: end if
4: v1, v2 ← children(r)
5: if v1 <ind v2 then
6: return PostOrder(v1) ◦ PostOrder(v2) ◦ [r]
7: else
8: return PostOrder(v2) ◦ PostOrder(v1) ◦ [r]
9: end if

Maier (2015) uses a strict eager strategy based on binary trees that demands that reductions
take place according to the elements’ post-ordering. For the topmost element s0 of the stack, the
oracle checks if the first element of the buffer is the direct projective successor. If not, Shift
gets predicted until the direct successor bi is at the top of the stack. Then, all the elements that
were shifted onto the stack located between s0 and bi get swapped back to the buffer. This forces
a left-to-right completion of the projective tree. Since this is the only allowed case for a Swap
transition, it follows that the buffer consists only of leaves.

Example 3.30.
Figure 3.11 visualises the ordering retrieved by a post-order traversal on a discontinuous tree.
Swapping w1 and w2 would be permissible by condition <ind but not by <G. Figure 3.12 shows
part of a transition sequence for the tree using the strict eager strategy of Maier (2015).

Although this approach is straightforward, one can see that it is not optimal. It predicts Swap
transitions in cases where completing constituents first would result in shorter derivations. Here,
reducing the intermediary subtree rooted at B would decrease the transition count.

A more flexible approach is taken by Stanojević and Alhama (2017) who perform online re-
ordering. This is permissible since the <G-relationships of nodes are preserved under Reduce
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S

C

w1

B

w2

A

w3 w4 w5

9

3

8

7

1 4 5 6 2

Figure 3.11: Example for projective ordering by post-order traversal.

Step Stack Buffer Action
0 w1, w2, w3, w4, w5 Shift
1 w1 w2, w3, w4, w5 Shift
2 w1, w2 w3, w4, w5 Shift
3 w1, w2, w3 w4, w5 Shift
4 w1, w2, w3, w4 w5 Shift
5 w1, w2, w3, w4, w5 Swap
6 w1, w2, w3, w5 w4 Swap
7 w1, w2, w5 w3, w4 Swap
8 w1, w5 w2, w3, w4 Reduce-C
9 ⟨C, {•, •}⟩ w2, w3, w4 ...
... ... ... ...

Figure 3.12: Example parse using the eager swap strategy outlined in Maier (2015) for the tree in
figure 3.11.

and UnarayReduce transitions due to ◁-compatibility. Algorithm 3.5 extracts the oracle.16 It
demands that nonterminals be allowed to be swapped onto the buffer.

Now, the oracle function returns the immediate successor of a configuration c in O. This oracle
prioritises the completion of substructures that are already in projective order. The swapAllowed
condition is given in equation 3.7.

swapAllowed(⟨S|s1|s0, B⟩) :⇔ s0 <G s1 (3.7)

Note however that the condition does not benefit parsing of figure 3.13. In this case, <G blocks
the more efficient Swap of Darüber1 and muß2 since Darüber1 <G muß2. This pinpoints at the
fact that the projective ordering that leads to a minimal number of transitions is dependent on the
form of the individual tree. Here, a rightmost index ordering would lead to a smaller transition
count. Generally, ordering by median leaf index or by start index of the largest consecutive span
of the constituent could be used to make the parser complete constituents in an optimal place to
reduce the number of Swap transitions. To my knowledge, this has not been explored yet.

Lazy Swap Eager swap can lead to suboptimal transition sequence lengths when it swaps items
into groups of nodes that could first be reduced projectively without the need for further swapping.
This leads to chains of Swap applications. Take for instance the tree in figure 3.14. Equation 3.8

16I adapted the algorithm to the unlexicalised transition set defined for binary trees in section 3.2.3.



40

Algorithm 3.5 Oracle extraction
Input: a word w1, ..., wn, a tree D over w
Output: an oracle O

1: c← ⟨ [ ], [w1, ...wn] ⟩
2: O ← List[ ]
3: while c ̸= goal do
4: if Reduce-X(c) ∈ D then
5: c←Reduce-X(c)
6: O.append(Reduce-X)
7: else if ReduceUnary-X(c) ∈ D then
8: c←ReduceUnary-X(c)
9: O.append(ReduceUnary-X)

10: else if swapAllowed(c) = True then
11: c←Swap(c)
12: O.append(Swap)
13: else
14: c←Shift(c)
15: O.append(Shift)
16: end if
17: end while
18: return O

S

Darüber1 muß2

VP

VP

nachgedacht3 werden4
1 6 2 4

3

5

7

Figure 3.13: Projective ordering for the tree over Darüber muß nachgedacht werden.

shows the transition sequence that would be induced by algorithm 3.5.17

||w1, w2, w3, w4 ⇒
Shift

w1||w2, w3, w4 ⇒
Shift

w1, w2||w3, w4 ⇒
Shift

w1, w2, w3||w4 ⇒
Swap

w1, w3||w2, w4 ⇒
Shift

w1, w3, w2||w4 ⇒
Shift

w1, w3, w2, w4|| ⇒
Swap

w1, w3, w4||w2 ⇒
Redcuce-A

w1, A||w2

(3.8)

w2 and w3 get swapped since w3 <G w2. But this blocks the reduction of w3 and w4 to A so
that a second Swap is necessary changing the order of w2 and w4. Then, w3 and w4 are adjacent
again and can be reduced. Postponing the Swap of w2 and w3 and instead shifting, reducing A
and then swapping w2 and A would lower the transition count and reduce the number of Swaps
by one. Equation 3.9 shows this shorter transition sequence leading to the same configuration.

||w1, w2, w3, w4 ⇒
Shift

w1||w2, w3, w4 ⇒
Shift

w1, w2||w3, w4 ⇒
Shift

w1, w2, w3||w4 ⇒
Shift

w1, w2, w3, w4|| ⇒
Reduce-A

w1, w2, A|| ⇒
Swap

w1, A||w2

(3.9)

Motivated by this observation, lazy swap adds a second condition to the Swap transition:
the two topmost stack items are not swapped if the adjacent element to the right (i.e. the first
position in the buffer) has the same closest maximal fully projective constituent as the stack top.
This prevents the parser from swapping elements into groups of nodes that can be reduced to a

17|| represents the border between stack and buffer in this shorthand notation.
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Figure 3.14: Minimal example for the motivation of lazy swap.

projective constituent. To formally define this notion, one needs the following (Stanojević and
Alhama, 2017):

Definition 3.31 (Projective Constituent).
Let w = w1, ..., wn be a word and D = ⟨V, ◁, v̂⟩ a tree for w. Let v ∈ V be a node.

1. v is called a projective constituent iff v dominates a span of leafs without a gap.

2. v is called a fully projective constituent iff v is a projective constituent and if all descendants
of v are projective constituents.

3. v is called a maximal fully projective constituent iff v is a fully projective constituent and the
parent of v is not a fully projective constituent.

Example 3.32.
Figure 3.15 shows a tree where all projective, fully projective and maximal fully projective con-
stituents are marked. Note that a projective constituent can have children that are not projective
constituents, here for instance S. The property does not tell anything about the order of the nodes
dominated by the constituent.

S

w1 w2

B

A

w3 w4

S

w1 w2 w3 w4

A

7

1 6

5

2 3

4

Figure 3.15: Tree with maximal fully projective node A. Projective constituents are circled in solid,
fully projective constituents dotted and maximal fully projective constituents dashed.

Now, one can define a function that returns the closest ancestor that is a maximally projective
constituent for a given constituent:

Definition 3.33 (Closest maximal projective constituent).
Let w be a word, D = ⟨V, ◁, v̂⟩ a tree over w. MPC : V → V is defined as follows:

v 7→


arg min

m∈M
|IndD(m)| if M ̸= ∅,

v otherwise,

where M denotes the set of all maximally fully projective constituents that are acendants of v
defined as follows:

M = {p ∈ V | p is a maximally fully projective constituent and p ◁+ v}
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Figure 3.10 shows the modified swapAllowed condition for lazy swap. Versley (2014) found that
a lazy approach outperforms an eager one, presumably because a large number of Swap transitions
is harder to predict.

swapAllowedlazy(⟨S|s1|s0, b0|B⟩) :⇔ s0 <G s1 ∧MPC(s0) ̸= MPC(s0) (3.10)

Lazier Swap Stanojević and Alhama (2017) took the idea of lazy swap and introduced an even
lazier swap strategy. They noticed that lazy swap does not help when the substructure that would
be more efficient to complete first does not exhibit a maximal fully projective constituent but could
be reduced to a projective constituent nonetheless.

Example 3.34.
Figure 3.16 shows a tree where only the terminals are maximally fully projective constituents.
Therefore a lazy oracle would predict a Swap for w2 and w3. w2 would be swapped into the
subtree rooted at B which would make two additional Swap transitions necessary to allow for the
treatment of the substructure. First completing the subtree rooted at B by resolving its lower-level
discontinuity would lead to a smaller step count.

S

w1 w2

C

B

w3 w4

A

w5

S

w1 w2 w3 w4 w5

B

9

1 8

7

2 5

6

3

4

Figure 3.16: Tree without maximal fully projective nodes (except for terminals). Projective con-
stituents are circled in solid, fully projective constituents dotted and maximal fully projective
constituents dashed.

To achieve this, Stanojević and Alhama (2017) introduce a function that returns the lowest
projective acendant of a given node:

Definition 3.35 (Closest Projective Constituent).
Let w be a word and D = ⟨V, ◁, v̂⟩ a tree over w. The function CPC : V → V is defined as follows:

v 7→ arg min
m∈M

|IndD(m)|

where M denotes the set of all maximal fully projective constituents that are ascendants of v as
established in definition 3.33.

swapAllowedlazier(⟨S|v1|s0, s0|B⟩) :⇔ s0 <G s1 ∧ CPC(s1) = CPC(s0) (3.11)

A Swap is only allowed if the closest projective constituent of the topmost stack element and
the second topmost stack element are the same. If they are not the same, one of the elements
belongs to a substructure that can be reduced first (potentially by bringing it first internally into
projective order). If they are the same there is no projective subtree for which the analysis would
be blocked by swapping the second topmost element. Then, a Swap is necessary to proceed with
the derivation. This version of the transition condition is given in equation 3.11. Stanojević and
Alhama (2017) show that the lazier swap condition entails lazy swap:
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Corollary 3.36.
Let D = ⟨V, ◁, v̂⟩ be a tree and si, ..., s1, s0, b0, ...bj a tree-cut of D where s0 <G s1. It holds that
CPC(s0) = CPC(s1)⇒MPC(s0) ̸= MPC(b0).

Proof. Assumption: CPC(s0) = CPC(s1). Either 1. there is a non-empty sequence v1, ..., vk of
non-projective constituents such that CPC(s0) ◁ v1, v1 ◁ v2, ..., vk ◁ s0 or 2. CPC(s0) ◁ s0.

1. Since the parent of s0 is non-projective, it follows that s0 is a maximal projective constituent.
By definition 3.33 it holds that MPC(s0) = s0. Since s0 per definition of a tree-cut does not
dominate b0, it holds that MPC(s0) ̸= MPC(b0).

2. Either (a) CPC(s0) is fully projective or (b) CPC(s0) is not fully projective.

(a) This contradicts s0 <G s1. The relation demands that the two sister nodes p0 with
p0◁

∗s0 and p1 with p1◁
∗s1 fulfil p0 <ind p1. It must hold that p0 = s0 since CPC(s0)◁s0

and CPC(s0) ◁∗ s1. Therefore s0 <ind p1. Since s0 is fully projective, it follows that
s0 <N p1. But this means that s1 must have been swapped from a position right of s0 to
the position left of s0 which would not have been allowed by <G since the two elements
already respected projective ordering. Therefore, CPC(s0) cannot be fully projective.

(b) It follows that MPC(s0) = s0 and therefore MPC(s0) ̸= MPC(b0) (see 1.).

Example 3.37.
Figure 3.17 shows the transition sequence predicted by the oracle derived using algorithm 3.5 with
the lazier swap condition given in figure 3.11 for the tree in equation 3.16. The lazy swap strategy
would have predicted a Swap at step 3 since MPC(w3) = w3 ̸= MPC(w4) = w4. This would
move w2 into the subtree rooted at B, blocking its derivation.

Step Stack Buffer Action check of SwapAllowedlazier

0 w1, w2, w3, w4, w5 Shift
1 w1 w2, w3, w4, w5 Shift
2 w1, w2 w3, w4, w5 Shift w2 ≮G w1

3 w1, w2, w3 w4, w5 Shift CP C(w2) = S ̸= B = CP C(w3)
4 w1, w2, w3, w4 w5 Shift w4 ≮G w3

5 w1, w2, w3, w4, w5 Swap w5 <G w4 ∧ CP C(w4) = B = CP C(w5)
6 w1, w2, w3, w5 w4 Reduce-A
7 w1, w2, A w4 Shift CP C(w2) = S ̸= B = CP C(A)
8 w1, w2, A, w4 Reduce-B
9 w1, w2, B Swap B <G w2 ∧ CP C(w2) = S = CP C(B)
10 w1, B w2 Reduce-C
11 C w2 Shift
12 C, w2 Reduce-S
13 S

Figure 3.17: Example parse using lazier swap strategy for tree in figure 3.16. Pointers are omitted
since the nodes are uniquely labelled.

Complexity For an input of length n the number of Reduce-X transitions to recover a bi-
nary tree is n − 1 (one for every internal node). The number of ReduceUnary-X transitions is
potentially unbounded. Let m denote the maximum unary chain length encountered during train-
ing used to hard-code a limit into the parser. Then the maximum number of ReduceUnary-X
transitions is m(2n− 1) (one chain for every leaf and for every internal node).
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Every leaf must be shifted once. The number of Swap transitions and further Shift transitions
is dependent on the choice of oracle. The worst case (not considering loops) is the strict eager
oracle used by Maier (2015) since it features the maximum Swap number before a reduction.
When establishing a discontinuous constituents, no intermediate elements are merged to reduce
the number of elements to swap.

Figure 3.18 shows the worst case tree for length 5 given by Coavoux and Crabbé (2017a). With
1 and 2 being on top of the stack, the parser needs to perform 3 intermediate Shift transitions and
3 Swap transitions to achieve projective order for 1 and 5. After Reduce-A, the same procedure
follows with 2 intermediate Shifts and 2 Swaps. For a sentence with length n, where k = n − 2
is the number of intermediate elements, this leads to

2(k + (k − 1) + (k − 2) + ...+ 1) = 2
(
k(k + 1)

2

)
= (n− 2)(n− 1) = n2 − 3n+ 2 (3.12)

transitions for projective reordering. This results in a total worst-case transition count of n2−n+
1 +m(2n− 1).

S

C

B

A

1 2 3 4 5

Figure 3.18: Example for worst case tree of length 5 with respect to Swap transition, adapted
from Coavoux and Crabbé (2017a).

Correctness To show the correctness of the transition system for the set of all ε-free range-
labelled binary trees, completeness and soundness must be shown.

For completeness, it has to be shown that every tree can be retrieved from some transition
sequence. Any two nodes in a tree-cut found in S and B can be moved into an adjacent position
via Shift and Swap and assigned a parent via Reduce-X. Furthermore, any single node can be
assigned a unary parent using ReduceUnary-X after shifting or composing it via Reduce-X.
Thus, from the initial configuration (tree-cut with leaves ⟨0, 1⟩, ..., ⟨|w| − 1, |w|⟩ for some word w),
any ε-free range-labelled binary tree for w can be built.

For soundness, it must be shown that any transition sequence produces a tree. First, it can
be seen that a node cannot have several parents. This follows from the fact that the daughter(s)
are removed from S when applying Reduce-X or ReduceUnary-X. Furthermore, by definition,
a final configuration consists of an empty buffer and only one constituent on the stack. Since the
number of constituents can only be reduced via Reduce-X, it follows that this one constituent
spans all input elements. Lastly, by definition of the initialisation function, the leaves are labelled
with one-length ranges that cover all indices of the input word. Thus, an ε-free range-labelled
binary tree can be retrieved.

The design of the transitions guarantees that at every step at least one transition is possible.
When prohibiting swap-loops via the <ind-condition and setting a maximum number of unary
chains, the maximum number of transitions is final. This follows directly from the fact that if
all possible Swaps were performed, the end of the buffer was reached and the maximum number
of unary chains were assigned to the topmost element of the stack only Reduce-X could be
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performed, reducing the number of elements. Eventually, only one root element is left. Therefore,
with these restrictions, the algorithm always reaches a final configuration.

3.2.5 Reordering with a Split Stack and the Gap Action

Coavoux and Crabbé (2017a) introduce a new transition called Gap. Instead of altering the order
of two elements as the Swap transition does, they give up the restriction that only the two topmost
elements of the stack can combine. Instead, any element of the stack is allowed to combine with
the topmost element.

They achieve this by splitting up the stack into two parts: the stack S and a deque ∆.18 A
dequeue is a sequence that can be accessed from both ends. Reductions can take place between
the tops of S and ∆. The Gap transition takes an element from the top of S and adds it to the
bottom of ∆. The Shift transition is modified so that it pushes all elements from ∆ onto S and
then pops an element from the buffer onto ∆.

In their original paper, Coavoux and Crabbé (2017a) use a lexicalised model that assigns heads
to constituents. In later work they present an unlexicalised approach that will be the basis for this
section (Coavoux et al., 2019).

The traditional Reduce transition is split into a Label-X and a Merge transition. Thus, they
call their approach ML-Gap (Merge-Label-Gap). Furthermore, by introducing a No-Label
transition, they can drop the requirement that the trees must be binary. Several nodes can be
grouped together via Merge before assigning a common parent via Label.

Inspired by span-based parsing for projective trees (Cross and Huang, 2016b), ML-Gap rep-
resents nodes by referencing the indices they dominate. In order to account for discontinuities, a
set of indices is used instead of a single range. The labelling of the nodes is stored in a separate
set K. The final elements of K can be arranged into a hierarchy from which the parse tree can be
restored. The following definitions extend the formalisation of Coavoux et al. (2019).

Definition 3.38 (Constituent candidate).

1. A set of integers s ⊆ {1, ..., n} with n ∈ N is called a constituent candidate (in length n).

2. The set of all constituent candidates in length n ∈ N is referred to by ConstCand(n) :=
P({1, ..., n}).

3. The set of all constituent candidates is referred to by ConstCand := Pfin(N).

4. Two constituent candidates s1, s2 are called compatible iff (s1 ⊂ s2)∨ (s2 ⊂ s1)∨ (s1∩s2 = ∅)

Definition 3.39 (Instantiated constituent).
Let N be an alphabet of nonterminal labels.

1. A tuple ⟨A, s⟩ is called an instantiated constituent wrt. N (in length n) iff A ∈ N and s is a
constituent candidate in length n.

2. The set of all instantiated constituents wrt. N in length n ∈ N is called Const(N,n) :=
N × ConstCand(n).

3. The set of all instantiated constituents wrt. N is called Const := N × ConstCand.

4. ⟨A1, s1⟩, ⟨A2, s2⟩ ∈ Const(N,n) are called compatible iff s1 and s2 are compatible.

Definition 3.40 (Sets of compatible constituents).
Let N be an alphabet of nonterminals and n ∈ N. Let S ⊆ ConstCand(n) be a set of constituent
candidates in length n.

18Coavoux and Crabbé (2017a) use D to refer to the deque which I changed to ∆ to prevent confusion since I
frequently use D to refer to a tree.
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1. S is called consistent iff for all s1, s2 ∈ S, s1 and s2 are compatible.

2. S is called rooted iff there exists s ∈ S such that s′ ⊂ s for all s′ ∈ S with s ̸= s′. s is called
the root of S and denoted by root(S) = s.

3. S is said to span length n iff for all i ∈ {1, ..., n} there exists some element s ∈ S such that
i ∈ s.

4. S is called complete for length n iff it is consistent, rooted and spans length n.

5. The terms consistent, rooted, spanning length n and complete naturally extend to sets of
instantiated constituents.

Definition 3.41 (Maximal subset).
Let S ⊆ ConstCand(n) be a consistent set of constituent candidates for some n ∈ N. The relation
⊂

max
⊂ S × S is defined as follows:

s1 ⊂
max

s2 :⇔ s1 ⊂ s2 ∧ ∄s3 ∈ S : s1 ⊂ s3 ⊂ s2, for all s1, s2 ∈ S

The relation is naturally extended to consistent sets of constituents.

Corollary 3.42.
Let n ∈ N and S ⊆ ConstCand(n) be a consistent set of constituent candidates. For every s1 ∈ S
there exists at most one element s2 such that s1 ⊂

max
s2.

Proof. Let us assume, there are s1, s2, s3 ∈ S such that s1 ⊂
max

s2 and s1 ⊂
max

s3. Since S is a
compatible constituent candidate set, it must hold that either s2 ⊂ s3 or s3 ⊂ s2 or s2 ∩ s3 = ∅.
Take some index i ∈ s1. By assumption also i ∈ s2 and i ∈ s3. Now, it cannot be that s2 ∩ s3 = ∅.
Assume that s2 ⊂ s3. This contradicts the assumption that s1 ⊂

max
s3. The reverse also holds

true.

Definition 3.43 (Unary-free tree).
Let D = ⟨V, ◁, v̂⟩ be a tree. D is called unary-free iff for all internal nodes v ∈ V either v has a
daughter that is a leaf or v has at least two daughters.

It can be seen that in a unary-free tree, there are no two internal nodes (i.e. nonterminals)
that dominate exactly the same set of leaves. The parent of an internal node must always enlarge
the indices covered by the yield and a daughter must always narrow them down. Since the leaves
are labelled with ranges, a unary relationship is allowed for pre-terminals to grant the possibility
of assigning a nonterminal label spanning a single symbol.

Corollary 3.44 (Equivalence of trees and constituent sets).

1. Let n ∈ N and D = ⟨V, ◁, v̂, λ⟩ a unary-free ε-free range-labelled tree spanning length n. One
can define a function ψ converting nodes to instantiated constituents as follows:

ψ : V → Const(N,n), v 7→ ⟨λ(v), IndD(v)⟩,

where it holds that:

(a) {ψ(v) | v ∈ V and v is internal} is complete for length n.

(b) v1 ◁ v2 ⇔ ψ(v2) ⊂
max

ψ(v1) for all v1, v2 ∈ V where v1, v2 are internal.

2. Let C ⊆ Const(N,n) be complete for length n. One can construct a unary-free ε-free range-
labelled tree D = ⟨V, ◁, v̂, λ⟩ spanning length n in the following fashion:

(a) V := root(K) ∪K,
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(b) v̂ := root(K),

(c) ◁ := ⊂
max

T ∪ {⟨c, i⟩ | i ∈ v̂,

{i} ∈ K, c = {i} or
{i} /∈ K, {i} ⊂ c, c ∈ K,∄c′ ∈ K : (c ̸= c′ ∧ {i} ⊂ c′ ⊂ c)

}19

(d) λ(⟨A, s⟩) := A for all ⟨A, s⟩ ∈ K,
λ(i) := ⟨i− 1, i⟩ for all i ∈ v̂.

Now it holds that c1 ⊂
max

c2 ⇔ c2 ◁ c2.

It can be seen that the two notations are equivalent and that the conversions preserve the
dominance relation. Set notation is useful for transition-based parsers since they do not rely
on the range tuples that arise from LCFRS rules. Note that set notation does not allow for
two constituents to span the same indices since dominance is expressed via the subset relation.
Therefore, trees are not allowed to exhibit chains of unary relations. It is possible to convert any
tree to a unary-free tree by collapsing every path of internal unaries A0, A1, ..., An to a single node
A0@A1@...@An and to convert it back by expanding the chain.20

Differentiating between constituent candidates and instantiated constituents makes it possible
for a transition system to construct constituents with more than two daughters using multiple
Merge actions. Every Merge enlarges the constituent candidate by one additional daughter.
A full constituent is only asserted when performing Label-X. This is comparable to implicit
binarisation as described by Gómez-Rodríguez (2014) for Earley and Left-Corner parsers since the
sequence of Merge transitions implicitly gives rise to a binary derivation. Constituent candidates
can be viewed as unordered dotted items and instantiated constituents as asserted productions.
This is visualised in figure 3.19.

S

A

w1

B

w2

C

w3

D

w4

{1, 2, 3, 4}• →
Label

⟨S, {1, 2, 3, 4}⟩

{1, 2, 3}•

{1, 2}•

⟨A, {1}⟩ ⟨B, {2}⟩ ⟨C, {3}⟩ ⟨D, {4}⟩

Figure 3.19: Implicit binarisation. The tree on the left exhibits a node with four children; on the
right a derivation via Merge and Label-X is shown.

A configuration in ML-Gap comprises of a stack, a deque and a set of label assignments.
Instead of a buffer as in SR-Swap, a simple index is used to keep track of the next element to
shift. This is possible since — without a Swap transition — no element can be moved onto the
buffer and thus its elements are guaranteed to respect linear precedence. The stack and the deque
hold a partition of the set of indices shifted up to the current point which is equivalent to the
tree-cut in SR-Swap (when concatenating the unread nodes). Figure 3.20 visualises a ML-Gap
configuration.

Definition 3.45 (ML-Gap configuration).
Let N be an alphabet of nonterminal labels and Q a set of states. CMLG is the set of all elements
⟨S,∆, i, j,K⟩ : q such that

1. j ∈ N marks the maximum index,21

19RT for a relation R denotes the converse relation.
20Coavoux and Cohen (2019) perform this conversion in the implementation of their parser.
21Contrary to Coavoux and Crabbé (2017a) I include the right border index as a component of the configuration

since I define the set of configurations for all possible input sequences. Therefore, a configuration must contain
information as to the number of elements left to shift.
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2. S and ∆ are sequences of constituent candidates in length j,

3. i ∈ {1, ..., j} marks the current index,

4. K ⊆ Const(N, j) is a set of instantiated constituents22 and

5. q ∈ Q is a state.

...

Stack S Deque ∆ Buffer B

wi wi+1 wi+2 ...s1 s0

stack top

dn ... d0

deque top

local region

Figure 3.20: Illustration of the ML-Gap configuration (without the set of constituents K). Illus-
tration inspired by Coavoux and Cohen (2019).

Coavoux et al. (2019) adopt the strategy of differentiating between structural and labelling
transitions from Cross and Huang (2016b). Depending on the previous action(s), only structural or
labelling transitions are possible which narrows down the search space for the neural scorer making
predictions easier. The model of Cross and Huang (2016b) simply alternates between structural
and labelling actions. To account for this, one can include a step index into the configuration that
counts up the total number of transitions applied and represents an even or an odd step.

Here, the Gap transition is utilised to enable merging the top element with an element anywhere
on the stack. Therefore, multiple consecutive applications of Gap must be possible. Furthermore,
a sequence of Gap transitions should be followed by a Merge to limit its application to useful
cases. Coavoux et al. (2019) define which transitions can follow each other using a finite state
automaton. For clarity, I integrate this restriction into the transitions and treat the state as part
of the configuration. The following definition of finite state automata is taken from Hopcroft et al.
(2007, chapter 2).

Definition 3.46 (Finite state automaton).
A finite state automaton (FSA) is a 5-tuple ⟨Σ, Q, q0, δ, F ⟩ where:

1. Σ is an alphabet,

2. Q is a finite non-empty set of states,

3. q0 ∈ Q is called the initial state,

4. δ : Q× Σ→ Q is called the transition function,

5. F ⊆ Q is the set of final states.

Definition 3.47 (MLG FSA).
The FSA for ML-GAP action sequences is defined as AMLG = ⟨T MLG, Q,Struct, δ, {Struct}⟩ where

1. T MLG = T MLG
struct ∪ T MLG

label is the set of ML-Gap transitions with

(a) T MLG
struct = {Shift,Gap,Merge} and

(b) T MLG
label = {No-Label,Label-X},

22Coavoux et al. (2019) use C to denote the set of instantiated constituents. I changed the symbol to prevent
confusion with variables used for configurations.
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2. Q = {Struct,Struct’,Label},

3. δ is the transition function defined as follows:

δ(Struct,Gap) = Struct’
δ(Struct,Shift) = Label
δ(Struct,Merge) = Label
δ(Struct’,Gap) = Struct’
δ(Struct’,Merge) = Label
δ(Label,Label-X) = Struct
δ(Label,No-Label) = Struct

The state diagram for AMLG is given in figure 3.21. The current state of the automaton is part
of the configuration and a new configuration can only be deduced from a transition if the FSA
accepts the transition as input at the given state.

Structstart Label

Struct’

Gap

Shift|Merge

Label-X|No-Label

Gap

Merge

Figure 3.21: Illustration of the FSA for the action sequences allowed in ML-Gap; reproduction of
a figure in Coavoux et al. (2019).

The full set of transitions for ML-Gap is given as deduction rules in figure 3.22. The formali-
sation of the transition system is given in definition 3.48.

Definition 3.48 (Merge-Label-Gap transition system).
A Merge-Label-Gap transition system for an alphabet T and an alphabet of nonterminals N is
a 5-tuple SMLG = ⟨CMLG, T MLG, σ, F, d⟩ where

1. T MLG is defined for CMLG as described in figure 3.22,

2. σ(w) = σ′(|w|) = ⟨ [ ], [ ], 0, |w|, ∅ ⟩ : Struct for every w ∈ T+,

3. F = {⟨ S,∆, i, j,K ⟩ : q ∈ CMLG | i = j ∧ ∃A ∈ N : ⟨A, {1, ..., j}⟩ ∈ K } and

4. d retrieves the tree from K for every ⟨ S,∆, i, j,K ⟩ : q ∈ F .

The definition of constituent sets allows to abstract away from symbols of an alphabet of
terminals when examining the properties of the transition system. Structurally, all words with the
same length are equivalent. It is only for the action scorer that indices must be used as references to
individual input items. In the following, when assuming a valid configuration c = ⟨ S,∆, i, j,K ⟩ :
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q the input sequence for which it is valid is omitted since the maximal index j already uniquely
determines that σ′(j) ∗⇒ c and therefore the statement holds for all words with length j over the
alphabet the transition system is defined on.

Corollary 3.49.
For every valid configuration c = ⟨ S,∆|d0, i, j,K ⟩ : q it holds that

∀s ∈ S ∪∆ : max(s) ≤ max(d0).

Proof. Let c = ⟨ S,∆|d0, i, j,K ⟩ : q be a valid configuration. S and ∆ can only contain those
elements that were added to the memory by Shift. Therefore, all elements are smaller than i or
equal. i must have been moved as a single-element set {i} to the top of the deque. Gap, Label-X
and No-Label do not alter the top of the deque. Merge performs set union on the top of S
and the top of ∆ but since all those elements are smaller than i, i remains the largest element.
Only Shift can move a larger element onto the deque top but it also enlarges the buffer index.
Therefore ∀s ∈ S ∪∆ : max(s) ≤ i = max(d0).

Corollary 3.50.
Let N be an alphabet of nonterminals. Every valid configuration c ∈ F has the form
c = ⟨ [ ], [{1, ..., n}], n, n,K ⟩ : Struct where K is a rooted set of instantiated constituents with
root(K) = ⟨A, {1, ..., n}⟩ for some A ∈ N .

Proof. Let us assume that c = ⟨ S,∆, i, j,K ⟩ : q ∈ F is a valid configuration. From the definition
of F already follows that i = j and ∃A ∈ N : ⟨A, {1, ..., j}⟩ ∈ K. Since j does not change for any
transition, it must hold that σ′(j) = ⟨ [ ], [ ], 0, j, ∅ ⟩ : Struct ∗⇒ ⟨ S,∆, j, j,K ⟩ : q and therefore
all instantiated constituents in K must be composed from elements in the range from 1 to j i.e. it
holds that K ⊆ Const(N, j). There must exist c′ = ⟨ S′, [{1, ..., n}], i′, j,K ′ ⟩ : Label ∈ CMLG such
that σ′(j) ∗⇒ c′ ⇒

Label-X
⟨ S′, [{1, ..., n}], i′, j,K ′ ∪ {⟨A, {1, ..., n}⟩} ⟩ : Struct ∗⇒ c. Since the top of

∆ always contains the maximum index of S and ∆ (cf. corollary 3.49), it must hold that S′ = [ ]
and i′ = j. Therefore, the result of the labelling is already the goal element. Hence, q = Struct
and there cannot be another instantiated constituent in K with indices {1, ..., n}. Now it holds
that for all ⟨A′, s′⟩ ∈ (K \ {⟨A, {1, ..., n}⟩}) : s′ ⊂ {1, ..., n} and thus root(K) = ⟨A, {1, ..., n}⟩.

Example 3.51.
Figure 3.24 shows an example parse for the tree in figure 3.23.

Oracle Nodes are necessarily created according to a rightmost index ordering. As Coavoux
et al. (2019) note, this stems from the property described by corollary 3.49.23 From the deque
top element, new nodes are established via Label-X. For two elements with different rightmost
indices, the one with the lower rightmost index is created first. For two nodes in the tree that have
the same rightmost index, one necessarily contains less indices than the other and is thus labelled
first before applying Merge once or more and then labelling the other. The following definition
is adopted from Coavoux and Cohen (2019):

Definition 3.52 (Rightmost index ordering).
The order ≤right is defined for constituent candidates as follows:

s1≤right s2 :⇔

max(s1) < max(s2) or

max(s1) = max(s2), s1 ⊆ s2.

23A more thorough proof of this property is given for the stack-free successor formalism in corollary 4.8.



51

axiom
⟨ [ ], [ ], 0, |w|, ∅ ⟩ : Struct

goal ⟨ S,∆, j, j,K ⟩ : Struct ∃A ∈ N : ⟨A, {1, ..., j}⟩ ∈ K

Structural actions T MLG
struct

Shift ⟨ S,∆, i, j,K ⟩ : q
⟨ S|∆, [{i+ 1}], i+ 1, j,K ⟩ : δ(q,Shift) δ(q,Shift) is defined

Merge ⟨ S|Is0 ,∆|Id0 , i, j,K ⟩ : q
⟨ S|∆, [Is0 ∪ Id0 ], i, j,K ⟩ : δ(q,Merge) δ(q,Merge) is defined

Gap ⟨ S|Is0 ,∆, i, j,K ⟩ : q
⟨ S, Is0 |∆, i, j,K ⟩ : δ(q,Gap) δ(q,Gap) is defined

Labelling actions T MLG
label

Label-X ⟨ S, [Id0 ], i, j,K ⟩ : q
⟨ S, [Id0 ], i, j,K ∪ {⟨X, Id0⟩} ⟩ : δ(q,Label-X) δ(q,Label-X) is defined

No-Label ⟨ S, [Id0 ], i, j,K ⟩ : q
⟨ S, [Id0 ], i, j,K ⟩ : δ(q,No-Label) δ(q,No-Label) is defined

Figure 3.22: Deduction Transitions for Gap-ML with input word w and FSA AMLG.

S

B

w1

A

w2 w3 w4 w5

Figure 3.23: Example non-binary tree.

The order extends naturally to instantiated constituents:

⟨A1, s1⟩≤right⟨A2, s2⟩ :⇔ s1≤right s2

For binary trees, there exists a bijection between derivations and trees (Coavoux and Crabbé,
2017a). For nodes with more than two daughters in non-binary trees, there exists more than
one implicit binarisation. See for instance steps 4 to 9 in figure 3.24 where instead indices 3 and
4 could have been merged first. Therefore, a standard binarisation must be fixed to define an
oracle. Coavoux and Crabbé (2017a) define an eager oracle that performs a leftmost binarisation
by prioritizing Merge in all possible cases. Algorithm 3.6 shows their oracle extraction in full
detail.

At each step, there is at most one element on the stack that can be retrieved by use of Gap to
merge with the top element. Therefore, the index used in the algorithm is unique.

Corollary 3.53.
Let T be an alphabet and w ∈ T+ a word. Let Kg be a set of instantiated constituents complete
for length |w| and c = ⟨ S,∆|d0, i, |w|,K ⟩ : Label a configuration in a transition sequence for
w licensed by the oracle o extracted by algorithm 3.6 for Kg. Let p ∈ Kg with d0 ⊂

max
p be the

parent of d0. For any two indices m,n ∈ {1, ..., |S|} such that S[m] ⊂
max

p and S[n] ⊂
max

p it holds
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step Stack Dequeue index current state new constituent Action

0 0 Struct Shift
1 {1} 1 Label No-Label
2 {1} {2} 2 Struct Shift
3 {1} {2} 2 Label No-Label
4 {1}, {2} {3} 3 Struct Merge
5 {1} {2, 3} 3 Label No-Label
6 {1} {2, 3} 3 Struct Shift
7 {1}, {2, 3} {4} 4 Label No-Label
8 {1}, {2, 3} {4} 4 Struct Merge
9 {1} {2, 3, 4} 4 Label Label-A
10 {1} {2, 3, 4} 4 Struct ⟨A, {2, 3, 4}⟩ Shift
11 {1}, {2, 3, 4} {5} 5 Struct Gap
12 {1} {2, 3, 4}, {5} 5 Struct’ Merge
13 {2, 3, 4} {1, 5} 5 Label Label-B
14 {2, 3, 4} {1, 5} 5 Struct ⟨B, {1, 5}⟩ Merge
15 {1, 2, 3, 4, 5} 5 Label Label-S
16 {1, 2, 3, 4, 5} 5 Struct ⟨S, {1, 2, 3, 4, 5}⟩

Figure 3.24: Example parse using the Gap transition for the tree in figure 3.14. Pointers are
omitted since the nodes are uniquely labelled.

that m = n.

Proof. Let us assume, without loss of generality, that m ≤ n. There must be some configuration
c′ = ⟨ S′,∆′|S[m], i′, |w|,K ′ ⟩ : q′ such that σ(w) ∗⇒ c′ ∗⇒ c. If m ̸= n, then ∃t ∈ {1, ..., |S|} :
S[n] = S′[t]. But since S[m] and S[n] have a common parent in Kg, o(c′) predicts to merge S[n]

and S[m] via t − 1 Gaps and one Merge transition. Then, neither S[n] nor S[m] can be in S.
Therefore, it must hold that m = n.

Complexity As Coavoux and Crabbé (2017a) note, for an input of length n the number of Shift
transitions is n and the number of Merge operations n− 1. Furthermore, the number of labelling
actions is 2n − 1 (one for every Shift and one after each Merge transition). This results in a
minimum number of 4n− 2 transitions.

The number of Gap transitions is variable. In the worst case, the first and the last token
have a common parent and the nodes in between incrementally form higher-level constituents as
visualised in figure 3.25 (Coavoux and Crabbé, 2017a). Let k = n−2 be the number of intermediate
elements, then the number of Gap actions needed is

k + (k − 1) + (k − 2) + ...+ 1 = k(k + 1)
2 = (n− 2)(n− 1)

2 = n2 − 3n+ 2
2 (3.13)

Therefore, the total maximum number of transitions is n2+5n−2
2 .

Coavoux and Crabbé (2017a) suggest using CompoundGap transitions that perform i con-
secutive Gaps inspired by the CompoundSwap transition introduced by Maier (2015). Every
Merge transition must be preceded by a CompoundGap. CompoundGap0 has no effect.

When following this proposal, the number of CompoundGaps is n−1. Then the total number
of actions is exactly 5n− 3. Ensuring that the number of transitions is equal for every input with
length n is a way to counteract the bias of the scorer towards long transition sequences as observed
by Crabbé (2014).
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Algorithm 3.6 ML-Gap oracle extraction
Input: a sequence w, a gold set of instantiated constituents Kg complete for length |w|
Output: an oracle O

1: c← σ(w)
2: O ← List[ ]
3: while c /∈ F do
4: if c.state = Struct then
5: if c.stack.top ⊂

max
p with c.dequeue.top ⊂

max
p ∈ Kg then

6: c←Merge(c)
7: O.append(Merge)
8: else if ∃i ∈ {1, ..., |c.stack|} : c.stack[i] ⊂

max
p with c.dequeue.top ⊂

max
p ∈ Kg then

9: while i ̸= 1 do
10: c←Gap(c)
11: O.append(Gap)
12: i← i− 1
13: end while
14: else
15: c←Shift(c)
16: O.append(Shift)
17: end if
18: else
19: if ∃⟨A, s⟩ ∈ Kg : s = c.dequeue.top then
20: c←Label-A(c)
21: O.append(Label-A)
22: else
23: c←No-Label(c)
24: O.append(No-Label)
25: end if
26: end if
27: end while
28: return O

Correctness Coavoux and Crabbé (2017a) proof the correctness of the transition system for
the set of discontinuous binary trees. This result can be generalised for all discontinuous trees.
Completeness follows from the correctness of the oracle as outlined above. For soundness, it must
be shown that any transition sequence produces a discontinuous tree. First, it can be seen that a
node cannot have several parents. This follows directly from the fact that a Label-X transition
must be followed by a structural action which either enlarges the element or shifts it onto the
stack from which it can only be retrieved to unify with another non-empty constituent candidate.
Therefore, for any valid configuration, K is a consistent constituent set.

Per design of the transition system, at least one action can be performed at any step. The
number of transitions has an upper bound. Thus, the algorithm always reaches a final configuration.
The set of instantiated constituents in the final configuration spans the length of the input by
definition. Furthermore, from corollary 3.50 it follows that K is rooted and thus K is a complete
constituent set wrt. the input.

Comparing with Swap The main benefit of ML-Gap lies in the extended local region in
comparison to shift-reduce parsing with the Swap transition (compare figures 3.5 and 3.20). The
model uses three data structures instead of two and places items onto the deque when reordering.
In a Swap model items are pushed back onto the buffer which is why Coavoux et al. (2019) assume
that a Swap parser may have difficulties differentiating between swapped elements and tokens that
have not been shifted yet.

Coavoux and Crabbé (2017a) assume Swap or Gap transitions are the hardest to predict for the
respective system and that they are the driving factor for derivation length. The Swap transition
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B
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1 2 3 4 5

Figure 3.25: Example of worst case tree of length 5 with respect to the Gap transition as given
by Coavoux and Crabbé (2017a).

doubles the number of necessary transitions associated with reordering because it comes with the
necessity to shift the swapped element(s) back from the buffer onto the stack in some future step.
Shorter derivations are desirable since this reduces the overall uncertainty of the system.

Coavoux and Crabbé (2017a) show that their lexicalised ML-Gap model for binary trees ap-
proaches derivation lengths half as long as those of the SR-Swap model for the worst case longest
derivation. This result is confirmed empirically: for the TIGER corpus the average derivation
length with respect to the sentence length n is 3.09n for SR-Swap and 2.03n for ML-Gap which
amounts to a 50 % derivation length reduction.

Surprisingly the average length of Gap derivation sequences roughly equals that of a standard
shift-reduce parser (2n− 1) (Coavoux and Crabbé, 2017a).

3.2.6 Lexicalisation

Lexicalised models are defined by Coavoux et al. (2019) as models that (a) assign a lexical head to
each constituent and (b) use heads of constituents as features to score parsing transitions. They
are motivated by lexicalised probabilistic context-free grammars where a nonterminal is annotated
with a terminal element representing its lexical head as shown in equation 3.14 (Coavoux et al.,
2019).

r = VP[saw]→ VP[saw] PP[telescope] (3.14)

q(r) then gives the probability of telescope modifying saw. The general assumption is that
information about a constituent’s head might help the parser to resolve ambiguities. Following this
idea, the original transition-based Shift-Reduce constituent parser of Sagae and Lavie (2005)
features two binary Reduce transitions instead of one:

• ReduceLeft-X: the head of the left element is assigned as head of the new constituent

• ReduceRight-X: the head of the right element is assigned as head of the new constituent

While this was a long-time standard approach for transition-based constituent parsers, Coavoux
et al. (2019) empirically show that unlexicalised models consistently outperform their lexicalised
counterparts. Unlexicalised ML-Gap shows an improvement of 0.1 absolute points on the DPTB
and as much as 1.1 and 1.3 absolute points on NeGra and TIGER when compared to ML-Gap
with lexicalised Merge transitions. The improvement on discontinuous constituents alone is even
greater. Providing the scorer with the predicted heads of the constituents in its domain as a feature
has varying effects and in some cases harms the score.

Coavoux et al. (2019) suggest that part of the reason for this result may lie in the head-driven
oracle of lexicalised models (cf. the <h-order for SR-Swap in equation 3.5). They hypothesise that
derivations given by eager oracles are easier to learn. In particular, they observe that lexicalised
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models require more complicated chains of transitions when constructing constituents with more
than two daughters. Unlexicalised models can use implicit left-branching-binarisation and directly
start merging elements as soon as the two topmost items have the same parent while lexicalised
models wait until the head of a constituent is shifted and then construct the constituent leading
to longer chains of transitions. Additionally, Coavoux et al. (2019) show that this leads to a larger
average size of stack and deque. They suggest that a smaller stack size is easer to represent as a
feature for the scorer and thus benefits the results of the unlexicalised model.

They also find that the overall number of Gap actions, which they assume to be most difficult
to predict, reduces for unlexicalised models. This is due to the fact that the lexicalised model
waits for a lexical head if it is discontinuous with respect to its k sisters. Then, it needs to perform
k chains of Gap transitions to move its sisters to an adjacent position while the unlexicalised
model can immediately merge these k elements and then only performs one chain of Gaps. The
number of consecutive Gap actions also reduces since intermediate elements might also belong
to a constituent with a discontinuous head. The unlexicalised model can reduce them first to a
constituent candidate which lowers the length of the Gap chains necessary for the first constituent.
Figure 3.26 illustrates this case.

S[5]

B[6]

A[5]

1 2 3 4 5 6

Figure 3.26: Lexicalised discontinuous tree; a head-driven Gap oracle would predict 4 Gap actions
to construct A while in an eager unlexicalised approach only 1 Gap action would be needed.

Finally, unlexicalised models are simpler to evaluate for the scorer since they feature fewer
transition types. This is in line with the findings of Cross and Huang (2016b) regarding alternating
structural and labelling steps to reduce the number of actions for the scorer to choose from at a
given step. Additionally, lexicalisation might increase the issue of error propagation. A wrong head
assignment that is used as a feature in subsequent steps might encourage further false classifications
(Coavoux et al., 2019).

Coavoux et al. (2019) point out that most recent unlexicalised transition-based parsing ap-
proaches (Coavoux and Crabbé, 2017b; Cross and Huang, 2016b; Coavoux et al., 2019, among
others) are based on a long short-term memory network (LSTM). LSTMs create context-aware
representations that enrich individual token representations with information of their surround-
ings. Coavoux et al. (2019) hypothesise that the LSTM transducer might implicitly learn lexicalised
information, which coincides with the result of Kuncoro et al. (2017) that suggests that LSTMs
learn head rules when faced with the training objective of jointly learning surface sequences and
syntactic trees.

3.2.7 Scorers

Transition-based parsers apply actions based on the predictions of a scorer. The scorer receives
features associated with certain elements in the configuration. It usually takes the form of a
machine learning model that is trained to predict the optimal sequence of transitions given by the
oracle.

Versley (2014) use a linear classifier with a set of features that include (among others) POS
tags, word forms, lemmas and morphological tags in a two-token window around the two nodes in
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consideration, as well as the category and POS tag of the leftmost and rightmost dependent of the
nodes themselves. Coavoux et al. (2019) successfully use the constituents in the domain of locality
of their transition system (stack top, deque top, buffer top) as well as the second topmost element
of both stack and deque.

Recent proposals employ a concatenation of word embeddings and character-aware embeddings
to represent leaves (Coavoux et al., 2019). The vectors are then enriched with contextual informa-
tion over the whole input sequence prior to parsing using a recurrent neural network. Constituents
are represented using their leftmost and their rightmost leaf representation. Stanojević and Al-
hama (2017) pioneered using neural networks as a classifier. Most importantly, they utilise the
whole configuration as a feature to a recurrent neural network for deciding the next parsing action
instead of limiting themselves on the elements in the local region of the shift-reduce framework.
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4. Parsing with a Stack-Free Transition System

Coavoux and Cohen (2019) present a novel approach to transition-based parsing by replacing
the configuration stack with an unordered random-access set. The parser is able to consider every
constituent in this memory regardless of its position in the sentence with a single action to construct
a new constituent. This omits the use of a Swap or a Gap transition for reordering and allows for
the derivation of a discontinuous tree over an input sequence of length n in 4n− 2 steps.

The role of the stack top in the traditional shift-reduce approach is performed by a separate
focus item. As in the Gap approach, a buffer of unread tokens is implemented in the form of an
index that is counted up when a new token gets retrieved.

The model is a direct advancement of the ML-Gap model of Coavoux et al. (2019) and likewise
driven by the idea to enable merging a focus element with any item in the memory without the
need to move intermediate items back onto the buffer. It continues the trend of enlarging the
domain of locality a transition has access to.

4.1. Configurations

Definition 4.1 (Stack-free configuration).
Let N be an alphabet of nonterminal labels. CSC denotes the set of all elements of the form
⟨ S, sf , i, j,K ⟩ : n such that

1. j ∈ N with j > 1,24

2. S ⊆ ConstCand(j − 1) is called the memory of c,

3. sf ∈ ConstCand(j − 1) is called the focus item of c,

4. i ∈ {1, ..., j}, marks the next index,25

5. K ⊆ Const(N, j − 1) is a set of instantiated constituents and

6. n ∈ N0 marks the step count.

S is the set that replaces the traditional stack while i represents the index of the next token
in the buffer. It differs from ML-Gap where it represented the most recent index shifted onto the
memory. sf is a separate focus element. K is the set of constituents labelled so far. A counter
n encodes the current step count. Figure 3.5 visualises the configuration. Note the enlarged local
region when compared to the SR-Shift and the ML-Gap configurations in figures 3.5 and 3.20.

4.2. Transitions

A set of deduction rules dictates the construction of new items. Shift takes the next item off the
buffer and makes the one-item set containing it the new focus item. The old focus item is added to
the memory set. Combine-s removes s from the set and forms a union with the focus item creating
a new focus item. The Label-X transition is used to declare the focus item sf an instantiated
constituent ⟨X, sf ⟩ with some label X. No-Label has no effect. The full list of deductions is given
in figure 4.2.

The unordered set allows for the focus item to be combined with any possibly non-adjacent
constituent candidate present in the memory. Therefore, there is no need for a reordering transition.

24Just like in definition 3.45 I include the desired maximal index as a component of the configuration since I define
the set of configurations for all possible input sequences. Therefore, a configuration must contain information as to
the number of elements left to shift.

25Coavoux and Cohen (2019) start indexing sequences with 0. I adjusted the definition to the convention of 1 in
this work.
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Set S Focus Buffer B

wi wi+1 wi+2 ...sn ... s0 sf

local region

Figure 4.1: Illustration of the stack-free configuration (without the set of initiated constituents).
Reproduction of an illustration in Coavoux and Cohen (2019).

axiom
⟨ ∅, ∅, 1, |w|+ 1, ∅ ⟩ : 0

goal ⟨ S, sf , j, j,K ⟩ : n ∃A ∈ N : ⟨A, {1, ..., j}⟩ ∈ K

Structural actions T SC
struct

Shift ⟨ S, sf , i, j,K ⟩ : n
⟨ S ∪ {sf}, {i}, i+ 1, j,K ⟩ : n+ 1 i < j, n is even

Combine-s ⟨ S, sf , i, j,K ⟩ : n
⟨ S \ {s}, sf ∪ s, i, j,K ⟩ : n+ 1 s ∈ S, n is even

Labelling actions T SC
label

Label-X ⟨ S, sf , i, j,K ⟩ : n
⟨ S, sf , i, j,K ∪ {⟨ X, sf ⟩} ⟩ : n+ 1 n is odd

No-Label ⟨ S, sf , i, j,K ⟩ : n
⟨ S, sf , i, j,K ⟩ : n+ 1 (i ̸= j ∨ S ̸= ∅), n is odd

Figure 4.2: Transitions for the set-free system, T SC = T SC
struct ∪ T SC

label.

The need for a No-Label-transition arises from the fact that Coavoux and Cohen (2019) divide
the transitions into structural (Shift, Combine-s) and labelling (Label-X, No-Label) actions.
Contrary to the Gap proposal described in section 3.2.5 and true to the original proposal by Cross
and Huang (2016b), a structural action is always followed by a labelling action and vice versa.
Therefore, a configuration carries a step counter that, if it is even, allows for a structural transition
to follow, or if it is odd, allows for a labelling transition.

Definition 4.2 (Stack-free transition system).
A stack-free or Shift-Combine transition system for an alphabet T and an alphabet of nonter-
minals N is a 5-tuple ⟨CSC, T SC, σ, F, d⟩ where

1. T SC is defined on CSC as shown in figure 4.2,

2. σ(w) = σ′(|w|) = ⟨ ∅, ∅, 1, |w|+ 1, ∅ ⟩ : 0 for every w ∈ T+,

3. F = {⟨ S, sf , i, j,K ⟩ : n ∈ CSC | i = j ∧ ∃A ∈ N : ⟨A, {1, ..., i}⟩ ∈ K}26 and

4. d retrieves the tree from K for every ⟨ S, sf , i, j,K ⟩ : n ∈ F .

Corollary 4.3.
Let c = ⟨S, sf , i, j,K⟩ : n be a valid configuration.

26Coavoux and Cohen (2019) do not require that K contain an instantiated constituent spanning {1, ..., i} but
instead that j = 4n − 2. One follows from the other as can be seen in section 4.4.
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1. It holds that max(sf ) = i− 1.27

2. Let c′ = ⟨S′, s′
f , i

′, j′,K ′⟩ : n′ ∈ CSC be a configuration such that c ⇒ c′. It holds that
max(sf ) ≤ max(s′

f ).

Proof. Part 1. follows from the fact that the focus item cannot be swapped with a set item. It can
only be enlarged with items from the set or shifted. Therefore, given the first buffer item i, i− 1
is always a member of the focus item, and therefore max(sf ) = i− 1. Now, if Shift is performed,
the new maximum focus element is larger than the preceding one. If another action is performed,
it remains equal. Hence, 2. is true.

Corollary 4.4.
For every valid configuration c = ⟨S, sf , i, j,K⟩ : n it holds that ∀s ∈ S : max(s) < sf .

Proof. For every s ∈ S there must exists a configuration c′ = ⟨S′, s, i′, j,K ′⟩ : n′ ∈ CSC such that
c′ ⇒

Shift
...

∗⇒ c. Therefore, following corollary 4.3, max(s) ≤ max(sf ). Furthermore, since Shift
was applied, i′ < i and thus max(s) < max(sf ).

Corollary 4.5.
Given an alphabet of nonterminals N and valid configurations c1 = ⟨ S1, sf , i1, j1,K1 ⟩ : n1, c

′
1 =

⟨ S1, sf , i1, j,K1 ∪ {⟨A, sf ⟩} ⟩ : n1 + 1 with A ∈ N such that c1 ⇒
Label-A

c′
1, there are no configura-

tions c2 = ⟨ S2, sf , i2, j,K2 ⟩ : n2, c
′
2 = ⟨ S2, sf , i2, j,K2 ∪ {⟨A′, sf ⟩} ⟩ : n2 + 1 with A′ ∈ N such

that c′
1

∗⇒ c2 ⇒
Label-A’

c′
2, i.e. no set can be assigned a label twice.

Proof. Let us assume that c ⇒
Label-A

c′ ∗⇒ c2 ⇒
Label-A’

c′
2. Label-A must be followed by a structural

transition. If Merge-s follows, then sf gets merged with some non-empty s and Label-A′ cannot
be applied to sf any more. If Shift follows, the maximum focus index gets increased by one and
for any following configuration, it does not decrease to max(sf ) (corollary 4.3). Therefore, c2 is
not derivable from c′.

Example 4.6.
Figure 4.3 shows an example parse. Note the ambiguity: the constituent A could have also been
constructed starting with {3, 4}, i.e. by performing the sequence Shift, No-Label, Combine-{3},
No-Label, Combine-{2} starting at step 6.

4.3. Oracle

Coavoux and Cohen (2019) present a static oracle as well as a dynamic oracle. The latter represents
the first dynamic oracle suggested for transition-based discontinuous constituent parsing.

4.3.1 Static Oracle

Coavoux and Cohen (2019) design an eager static oracle with a priority on applying Combine-s
to keep the number of elements in the set as small as possible. A smaller memory means fewer
choices for Combine-X actions in the future which facilitates decisions and makes scoring faster.

Algorithm 4.1 describes the static oracle extraction for the stack-free-transition system. It is a
direct successor of the ML-Gap oracle given in algorithm 3.6. Instead of a chain of Gap transitions
followed by a Merge it simply predicts one Combine-s transition. Corollary 3.53 translates to
the stack-free approach: there is at most one sister to combine with the focus item present in the
set at any step.

27Coavoux and Cohen (2019) make this a condition on all stack-free configurations.
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step set focus index new constituent action

0 1 Shift

1 1 2 No-Label

2 1 2 Shift

3 {1} 2 3 No-Label

4 {1} 2 3 Shift

5 {1}, {2} 3 4 No-Label

6 {1}, {2} 3 4 Combine-{2}

7 {1} 2, 3 4 No-Label

8 {1} 2, 3 4 Shift

9 {1}, {2, 3} 4 5 No-Label

10 {1}, {2, 3} 4 5 Combine-{2, 3}

11 {1} 2, 3, 4 5 Label-A

12 {1} 2, 3, 4 5 ⟨A, {2, 3, 4}⟩ Shift

13 {1}, {2, 3, 4} 5 6 No-Label

14 {1}, {2, 3, 4} 5 6 Combine-{1}

15 {2, 3, 4} 1, 5 6 Label-B

16 {2, 3, 4} 1, 5 6 ⟨B, {1, 5}⟩ Combine-{2, 3, 4}

17 1, 2, 3, 4, 5 6 Label-S

18 1, 2, 3, 4, 5 6 ⟨S, {1, 2, 3, 4, 5}⟩

Figure 4.3: Example parse using the stack-free transition system for the tree in figure 3.14. The
columns set and focus represent sets with the outer brackets being are omitted.

4.3.2 Dynamic Oracle

A dynamic oracle predicts the best actions to perform for any valid configuration — not only the
configurations part of the gold path to the desired tree. This is motivated by the fact that training
a neural classifier only on the gold scenario limits the quality of information provided at training.
When taking a wrong turn by choosing a bad transition the parser should still be able to construct
the best possible parse tree even if it is no longer on the path to the perfect prediction.

This directly addresses the issue of error propagation. The term refers to a common problem
with incremental models where predictions are dependent on previous decisions. It describes the
tendency of an initial erroneous assignment to evoke more errors in subsequent steps. McDonald
and Nivre (2007) first observed this tendency in transition-based parsers.

The idea of a dynamic oracle was first brought forward by Goldberg and Nivre (2012b) for
dependency parsing. Their oracle outputs a set of best actions to perform and is therefore non-
deterministic. Dynamic oracles for projective constituent parsing were proposed by a number of
authors, for instance Cross and Huang (2016b). The dynamic oracle for discontinuous constituent
parsing proposed by Coavoux and Cohen (2019) is an extension of this work. The following
prerequisites are needed.

Definition 4.7 (Reachability).
Let N be an alphabet of nonterminal labels.

1. Let c = ⟨ S, sf , i, j,K ⟩ : n ∈ CSC be a configuration. An instantiated constituent ⟨A, s⟩ ∈
Const(N) such that ⟨A, s⟩ /∈ K is said to be reachable from c iff there exists a configuration
c′ = ⟨ S′, s′

f , i
′, j,K ′ ⟩ such that ⟨A, s⟩ ∈ K ′ and c

∗⇒ c′.28

28In contrast to Coavoux and Cohen (2019) I explicitly require that c /∈ K. This facilitates the following definitions.
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Algorithm 4.1 Stack-free static oracle extraction
Input: a word w, a gold set of instantiated constituents Kg complete for length |w|
Output: an oracle O

1: c← σ(w)
2: O ← List[ ]
3: while c /∈ F do
4: if c.step is even then
5: if ∃s ∈ c.memory : s ⊂

max
p with c.focus ⊂

max
p ∈ Kg then

6: c←Combine-s(c)
7: O.append(Combine-s)
8: else
9: c←Shift(c)

10: O.append(Shift)
11: end if
12: else
13: if ∃⟨A, s⟩ ∈ Kg : c.focus = s then
14: c←Label-A(c)
15: O.append(Label-A)
16: else
17: c←No-Label(c)
18: O.append(No-Label)
19: end if
20: end if
21: end while
22: return O

2. The function reach is defined as follows:

reach : CSC × P(Const(N))→ P(Const(N)),

⟨c,K⟩ 7→ {k ∈ K | k is reachable from c}.

In other words, for a set of instantiated constituents K wrt. N in any length, reach gives
all of the constituents in K that are reachable from a configuration ⟨ S, sf , i, j,K ⟩ : n. It is
straightforward to see that only constituents in length j − 1 are reachable.

Corollary 4.8.
Let N be an alphabet of nonterminal labels, ⟨A, s⟩, ⟨A′, s′⟩ ∈ Const(N, j − 1) for some j ∈ N
instantiated constituents with ⟨A, s⟩≤right⟨A′, s′⟩ and s ̸= s′ and cb = ⟨ Sb, sb, ib, j,Kb ⟩ : nb ∈ CSC

a valid configuration with ⟨A, s⟩, ⟨A′, s′⟩ ∈ Kb. Then it follows that there exist valid configurations
⟨ S, s, i, j,K ⟩ : n, ⟨ S′, s′, i′, j,K ′ ⟩ : n′ ∈ CSC such that ⟨ S, s, i, j+1,K ⟩ : n ⇒

Label-A
⟨ S, s, i, j+

1,K ∪ {⟨A, s⟩} ⟩ : n + 1 ∗⇒ ⟨ S′, s′, i′, j + 1,K ′ ⟩ : n′ ⇒
Label-A’

⟨ S′, s′, i′, j + 1,K ′ ∪ {⟨A′, s′⟩} ⟩ :

n′ + 1 ∗⇒ cb. In other words: ⟨A, s⟩ must be constructed before ⟨A′, s′⟩.

Proof. Let us assume the contrary: there is a transition sequence that contains cb, that does not
fulfil this property. By definition of the transitions in figure 4.2: if ⟨A, s⟩, ⟨A′, s′⟩ ∈ Kb, there must
exist c = ⟨ S, s, i, j+1,K ⟩ : n, cl = ⟨ S, s, i, j+1,K∪{⟨A, s⟩}⟩ : n+1, c′ = ⟨ S′, s′, i′, j+1,K ′ ⟩ :
n′ and c′

l = ⟨ S′, s′, i′, j,K ′ ∪ {⟨A′s′⟩} ⟩ : n′ + 1 such that σ′(j − 1) ∗⇒ c ⇒
Label-A

cl
∗⇒ cb and

σ′(j− 1) ∗⇒ c′ ⇒
Label-A’

c′
l

∗⇒ cb. By assumption, it cannot be that cl
∗⇒ c′, so either 1. the variables

denote the same transition or 2. σ′(j − 1) ∗⇒ c′ ⇒
Label-A′

c′
l

∗⇒ c ⇒
Label-A

cl
∗⇒ cb.

1. This contradicts the corollary assumption that s ̸= s′.

2. Following corollary 4.3 it must hold that max(s′) ≤ max(s). Now, there are two cases: (a)
max(s′) < max(s) or (b) max(s′) = max(s)
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(a) This contradicts the assumption that ⟨A, s⟩ ≤right ⟨A′, s′⟩.

(b) First, i = i′ (corollary 4.3). By definition 3.52 it must hold that s ⊆ s′. Since s ̸= s′

by assumption it follows that s ⊂ s′. Thus, there exists x ∈ s′ such that x /∈ s. This
contradicts with c′ ∗⇒ c since there is no structural action to achieve this. Thus, this
also contradicts the assumptions and the corollary is true.

In their statement about the property in corollary 4.8, Coavoux and Cohen (2019) do not require
that s ̸= s′. But s = s′ would trivially mean that the variables denote the same nonterminal and
the same configuration since no set can be assigned a label twice (corollary 4.5).

Coavoux and Cohen (2019) note the following:

Corollary 4.9.
Given an alphabet of nonterminals N , a valid configuration c = ⟨ S, sf , i, j,K ⟩ : n ∈ CSC where
n is odd and an instantiated constituent ⟨A, sg⟩ ∈ Const(N, j − 1) with ⟨A, sg⟩ /∈ K. ⟨A, sg⟩ is
reachable from c iff:

1. max(sf ) ≤ max(sg) and

2. ∀s ∈ S ∪ {sf} : (s ⊆ sg) or (s ∩ sg = ∅).

Proof.

(⇒) From the reachability of ⟨A, sg⟩ follows that there exists a configuration c′ = ⟨ S′, s′
f , i

′, j′,K ′ ⟩ :
n′ such that ⟨A, sg⟩ ∈ K ′ and c

∗⇒ c′. Since ⟨A, sg⟩ /∈ K, it follows that there exist con-
figurations cg = ⟨ Sg, sg, ig, j,Kg ⟩ : ng and cg′ = ⟨ Sg, sg, ig, j,Kg ∪ {sg} ⟩ : ng + 1 such
that c ∗⇒ cg ⇒

Label-A
cg′ . Condition 1. now follows directly from corollary 4.3. Furthermore,

if there was an element s ∈ S ∪ {sf} such that there was an index x ∈ s ∩ sg and an index
y ∈ s\sg, ⟨A, sg⟩ would not be reachable from c, since Merge-s would be necessary to build
sg but Merge-s would also make y an element in the focus set. Therefore condition 2 must
also hold.

(⇐) Either (a) max(sf ) = max(sg) or (b) max(sf ) < max(sg).

(a) By condition 2 it must hold that sf ⊆ sg. Let {y1, ..., ym} = sg \ sf . No element in
sg \ sf was introduced by a Shift following c since max(sf ) = max(sg). Therefore it
holds that ∃Yz ∈ S : yz ∈ Yz for all z ∈ {1, ...,m}. Due to condition 2, it must hold
that Yz ⊆ sg for every z ∈ {1, ...,m}. It holds that sf ∪ Y1 ∪ ... ∪ Ym = sg. One can
construct a path: c⇒

λ1
... ⇒

Combine-Y1
⟨ S \ {Y1}, sf ∪ Y1, i, j,K

′ ⟩ : n+ 2⇒
λ2
... ⇒

Combine-Ym

⟨ S \ {Y1, ..., Ym}, sg, i, j,K
′′ ⟩ : n+ 2m ⇒

Label-A
⟨ S \ {Y1, ..., Ym}, sg, i, j,K ∪ ⟨A, sg⟩ ⟩ :

n + 2m + 1 with λ1, ..., λm ∈ T SC
label. Therefore ⟨A, sg⟩ is reachable from c. If sf = sg,

then simply m = 0.

(b) For all s ∈ S it must hold that max(s) < max(sf ) (corollary 4.4). Therefore, all ele-
ments i, i+1, ...,max(sg) must be shifted from the buffer to construct sg. Now construct
a path: c⇒

λ1
c′ ⇒

Shift
⟨ S ∪ {sf}, {i}, i+ 1, j,K ′ ⟩ : n+ 2⇒

λ2
... ⇒

Shift
⟨ S ∪ {sf , {i}, ..., {max(sg) − 1}}, {max(sg)},max(sg) + 1, j,K ′′ ⟩ : n + 2(max(sg) −
max(sf )) = c′ with λ1, ..., λmax(sg)−max(sf ) ∈ T SC

label. It holds that ∀s ∈ {{i}, ..., {max(sg)−
1}} : (s ⊆ sg) or s ∩ sg = ∅ since s has only one element. Now, for c′ it follows by case
(a), that ⟨A, sg⟩ is reachable from c′. Therefore ⟨A, sg⟩ is also reachable from c.
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Corollary 4.10.
Let N be an alphabet of nonterminals, and c = ⟨ S, sf , i, j,K ⟩ : n ∈ CSC a valid configuration
where n is even. Let ⟨A, sg⟩ ∈ Const(N, j − 1) be an instantiated constituent with ⟨A, sg⟩ /∈ K.
⟨A, sg⟩ is reachable from c iff:

1. max(sf ) ≤ max(sg),

2. ∀s ∈ S ∪ {sf} : (s ⊆ sg) or (s ∩ sg = ∅) and

3. sf ̸= sg.

Proof. This is straightforward to see following corollary 4.9 in combination with the fact that the
current focus item cannot be labelled since only Shift and Combine are allowed.

Following Cross and Huang (2016b), Coavoux and Cohen (2019) define a function to retrieve
the smallest (with respect to ≤right) reachable gold constituent. I adapted the function to the
notation used here:

Definition 4.11 (Next function).
Let N be an alphabet of nonterminal labels. The function next is defined as follows:

{⟨c,Kg⟩ | ∃m ∈ N : σ′(m) ∗⇒ c, c /∈ F,Kg ⊆ Const(N,m),Kg is complete for m} → Const(N)

⟨c,Kg⟩ 7→ arg min
≤right

reach(c,Kg)

Restricting the function to valid but not final configurations for an input length m and to
sets of constituents complete for length m guarantees that at least {1, ...,m} ∈ reach(c,Kg).
Furthermore, since Kg is consistent, the elements in reach(c,Kg) are pairwise-compatible and
therefore a minimal element exists. Thus, next is well-defined.

Now, the oracle is defined separately for odd and for even steps:

Definition 4.12 (Dynamic oracle odd).
Let N be an alphabet of nonterminals, m ∈ N an integer, Kg a complete set of instantiated
constituents wrt. N for length m and c = ⟨ S, sf , i,m + 1,K ⟩ : n a configuration such that n is
odd and σ′(m) ∗⇒ c.

oodd(c,Kg) =

{Label-A}, if ∃⟨A, sf ⟩ ∈ Kg,

{No-Label}, otherwise.

Definition 4.13 (Dynamic oracle even).
Let N be an alphabet of nonterminals, m ∈ N an integer, Kg a complete set of instantiated
constituents wrt. N for length m and c = ⟨ S, sf , i,m + 1,K ⟩ : n a configuration such that n is
even and σ′(m) ∗⇒ c.

oeven(c,Kg) =

{Combine-s | (sf ∪ s) ⊆ s′
f}, if max(s′

f ) = max(sf ),

{Combine-s | (sf ∪ s) ⊆ s′
f} ∪ {Shift}, if max(s′

f ) > max(sf ),

where next(c,Kg) = ⟨A, s′
f ⟩.

For training, Coavoux and Cohen (2019) make the oracle deterministic by choosing Combine
at an even step if the oracle allows for it. This is done to keep the stack as small as possible which
reduces the number of elements future Combine actions need to evaluate. If several Combine
actions are possible, the element with the highest right index is merged. This is done to reduce the
number of non-adjacent parts in the new set which could potentially be impossible to represent
uniquely by the four index constituent embedding representation (see section 4.5.2).
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4.3.3 Oracle Correctness

Coavoux and Cohen (2019) proof that the oracle described in definitions 4.12 and 4.13 always leads
to the reachable tree with the highest F-score with respect to a gold tree for any configuration.
They give the following definitions for precision, recall and F-score:

Definition 4.14 (F, precision, recall).
Let T be an alphabet of terminals, N an alphabet of nonterminals, w ∈ T+ a word and Kg, K̂

sets of instantiated constituents wrt. N complete for length |w|. Kg is the gold tree and K̂ the
predicted tree.

precision(K̂,Kg) = |K̂ ∩Kg|
|K̂|

recall(K̂,Kg) = |K̂ ∩Kg|
|Kg|

F1(K̂,Kg) = 2 · precision(K̂,Kg) · recall(K̂,Kg)
precision(K̂,Kg) + recall(K̂,Kg)

Precision, recall and F1-score are common evaluation metrics for information retrieval. Pre-
cision measures the percentage of identified constituents that are actually correct (i.e. that are
gold constituents). In other words: it rises when the number of false positives goes down. Recall
measures the percentage of gold constituents that were identified by the parser. It increases when
the number of false negatives reduces. F1-score is a means to combine the two metrics into one
measure (Jurafsky and Martin, 2009, chapter 13.5.3).

These concepts are related to the notions of soundness, completeness and correctness introduced
in section 3.1.5. Proving that the dynamic oracle is optimal for precision and recall also entails
that the oracle is correct in a static scenario. A proof can be performed by showing optimality
both for odd and even steps.

Coavoux and Cohen (2019) give the following proof: By definition, for a configuration c =
⟨S, sf , i, j,K⟩ : n and a gold tree Kg, oodd(c,Kg) is optimal for precision because it only predicts
a Label-A-action if the constituent ⟨A, sf ⟩ is actually in the gold tree Kg. It does not add to
the number of false positives. Furthermore, it is optimal for recall since, if the current focus is a
gold constituent, it will assign a label to it. It does not add to the number of false negatives by
omitting a label.

oeven(c,Kg) is optimal for precision, since it does not label new constituents at all, so it cannot
add to the number of false positives. For its relationship with recall, the question stands whether
its prediction can have the effect of prohibiting reaching a gold constituent. Coavoux and Cohen
(2019) show the following:

Corollary 4.15.
Given an alphabet of nonterminals N , a valid configuration c = ⟨ S, sf , i, j,K ⟩ : n such that n
is even and a set of instantiated constituents complete for length j − 1 called Kg, it holds that
∀kg ∈ Kg : kg ∈ reach(c,Kg) ⇒ (∀c′ ∈ oeven(c,Kg) : kg ∈ reach(c′,Kg)), i.e. after any transition
in the oracle’s even prediction, kg will still be reachable.

Proof. Assume that next(c,Kg) = ⟨A′, sh⟩ and that ⟨A, sg⟩ ∈ Kg is a constituent reachable from
c. There are two cases to explore, based on the definition of oeven: 1. Shift or 2. Combine-s.

1. If Shift ∈ oeven(c,Kg), then max(sh) > max(sf ). Following corollary 4.10, it holds that
max(sf ) ≤ max(sg) as well as ∀s ∈ S ∪ {sf} : (s ⊆ sg) or (s∩ sg = ∅). Furthermore sg ̸= sf .
Let us assume that ⟨A, sg⟩ is not reachable from Shift(c) = ⟨ S∪{sf}, {i}, i+1, j,K ⟩ : n+1.
Then either (a) max({i}) > max(sg) or (b) ∃s ∈ S ∪ {sf , {i}} : (s ⊈ sg) and (s ∩ sg ̸= ∅)
(corollary 4.9).
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(a) This entails that max(sg) = max(sf ) < max(sh). But then sg ≤right sh which contra-
dicts the assumption that next(c,Kg) = ⟨A′, sh⟩.

(b) Per assumption this can only be true for {i}. From {i} ∩ sg ̸= ∅ follows {i} ⊆ sg. This
contradicts {i} ⊈ sg. Therefore, ⟨A, sg⟩ must be reachable from Shift(c).

2. For any Combine-sb ∈ oeven(c,Kg): per oracle definition it holds that (sf ∪ sb) ⊆ sh. Since
⟨A′, sh⟩ is also reachable from c, it must hold that sg and sh are compatible or sg = sh. Four
cases:

(a) sg = sh. Then ⟨A, sg⟩ is trivially also reachable from Combine-sb(c).

(b) sh ⊂ sg. Therefore, also ∀s ∈ (S \ {sb})∪{sf ∪ sb} : (s ⊆ sg) or (s∩ sg = ∅). Therefore,
by corollary 4.9, ⟨A, sg⟩ is still reachable from Combine-sb(c).

(c) sg ⊂ sh. It follows that sg ≤right sh. But then, next(c,Kg) ̸= ⟨A′, sh⟩ since sg is smaller
than sh which contradicts the definition of sh.

(d) sg ∩ sh = ∅. Then also sf ∩ sg = ∅ and s∩ sg = ∅. Therefore ∀s ∈ (S \{sb})∪{sf ∪ sb} :
(s ⊆ sg)∨(s∩sg = ∅) and thus, by corollary 4.9, ⟨A, sg⟩ is still reachable from Combine-
sb(c).

4.4. Complexity

Given a word w = w0...wn and a transition sequence, for every element in {1, ..., n}, four actions
are applied: It is shifted to become the focus item, then a labelling transition is performed.
Furthermore, each Shift puts the previous focus item into the memory from which it is retrieved
at some future point by Merge. Then, another labelling step follows. Only for the focus element
identified by max(sf ) = |w|, the second pair of steps is not present, since it is never put into the
memory. When all these actions have been performed, the focus element consists of {1, ..., n} and
a labelling action has established the root. Therefore one can construct a tree for a sentence of
length n in 4n− 2 steps.

As Coavoux and Cohen (2019) note, for structural steps, |S|+1 different transitions are possible.
In the worst case, S contains n−1 items (i.e. when no Merge has been performed and all items in
{1, ..., n} have been shifted). For labelling steps, |N |+ 1 different actions can be predicted. Thus,
the time complexity is O(n(n − 1) + n(|N | + 1)) = O(n(|N | + n)) (Coavoux and Cohen, 2019).
This is a slight downgrade in comparison to the time complexity of ML-Gap (cf. section 3.2.5). In
practice, fast matrix-multiplication for one-step evaluation of all Combine actions with elements
in the memory mitigates this disadvantage.

4.5. Implementation

Coavoux and Cohen (2019) implement their parsing algorithm using the Python programming
language. The action scorer, trained to predict the optimal action according to the oracle, is a
neural network model built with the Pytorch library (Paszke et al., 2017). From this arises the
question of how to represent tokens and sets of tokens in a form usable by the neural model.
Furthermore, an objective function must be set. Additionally, Coavoux and Cohen (2019) include
a POS-tagging component.

4.5.1 Token Representations

Coavoux and Cohen (2019) follow previous proposals for constituency and dependency parsing like
Cross and Huang (2016a) and Kiperwasser and Goldberg (2016) that suggest using a recurrent
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neural network (RNN) to construct context-aware representations for the input tokens. In the
following, I will deviate slightly from Coavoux and Cohen (2019) in favour of the notation used in
Goldberg (2022).

Given a sequence of input tokens w1:n = w1, ..., wn, Coavoux and Cohen (2019) first compute
a representation for each token using a concatenation of a character-aware embedding and a word
embedding.

Word Embedding When encoding a set of k distinct categorial features, it is common to
associate each of these features with a dense vector representation called embedding. These vectors
are trained and optimised as parameters of the model to achieve the optimal representation for
each symbol (Goldberg, 2022, chapter 4.8).

Definition 4.16 (Alphabet index).
Let V be an alphabet. idxV : V → {i ∈ N | i ≤ |V |} denotes a bijective function from symbols in
V to unique indices.

Definition 4.17 (Embedding matrix).
For an alphabet V and an embedding dimension d, E ∈ R|V |×d is called an embedding matrix. For
a symbol s ∈ V , the idxV (s)-th row of E is defined as the embedding of s.

In many natural language processing tasks symbols represent natural language words. Thus,
the term word embedding was coined. Traditionally, features of an alphabet V are encoded as
vectors with dimensionality |V | filled with 0s except for one position with value 1 that corresponds
to a distinct symbol. This is called a one-hot encoding. Dense feature representations allow it to
represent a vocabulary in a much smaller dimensionality than |V |.29

For the vocabulary of observed natural language words V , an embedding matrix Eword for V
with dimension dword-emb and an input sequence w = w1...wn, Coavoux and Cohen (2019) use
e(wi) to denote the embedding for wi with i ∈ {1, ..., n}.

e(wi) := E[idxV (wi)]
word (4.1)

Eword ∈ R|V |×dword-emb , e(wi) ∈ Rdword-emb

When training on the DPTB corpus, Coavoux and Cohen (2019) extract 44530 unique words,
including special <PAD> and <UNK> symbols. They embed them into a 32-dimensional space.

Character-Aware Embedding While word embeddings are a very capable way to represent
discrete categories, they disregard the internal structure of words. Prefixes and suffixes may give
information about the word’s role in a sentence. For instance, the suffix -ing for English verbs
indicates an infinitive. In our context, it usually means that it is dominated by another (main)
verb in the constituent tree.

An embedding matrix that assigns distinct embeddings to different word surface forms can be
assumed to capture the similarities and differences that are related to suffixes or prefixes from
their distribution. However, it has been shown that combining word embeddings with a layer
based on sub-word information improves POS-tagging results (Plank et al., 2016). This has two
reasons. First, treating every word discretely generally requires more training data. Secondly,
looking deeper allows to compute representations for words not seen at all during training (Gaddy
et al., 2018).

Coavoux and Cohen (2019) use a character-aware-embedding as the second foundation for their
token representations. It is generated using a bidirectional long short-term memory (biLSTM)

29Please refer to Goldberg (2022, chapter 8.4) for more information on the relation between one-hot and dense
encoding.
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encoder. Viewed abstractly, an LSTM (Hochreiter and Schmidhuber, 1997) is a function that
receives as input an arbitrarily long sequence of vectors x0:n = x1, ...,xn with xi ∈ Rdin for all
i ∈ {1, ..., n} and returns as output a vector yn ∈ Rdout with din and dout being pre-defined input
and output dimensionalities (Goldberg, 2022).

When used as a transducer, each input vector xi is mapped to the output generated for the
sequence up until xi, i.e. for x0:i. The internal computation function of the LSTM makes it
possible for information from the previous entries in the sequence to influence the output for xi.
When used as an encoder, only the final output is used. It represents a context-aware embedding
for the whole input sequence.

The following full definition of an LSTM is based on Goldberg (2022, chapter 15). ⊙ denotes
element-wise vector multiplication.

Definition 4.18 (LSTM).
A long short-term memory (LSTM) model is defined as a function with the following properties:

LSTM∗(x0:n) = y0:n

yi = LSTM(x1:i)

LSTM(x0:t) = ht

ht = o⊙ tanh(ct)

ct = f ⊙ ct−1 + i⊙ g

i = sigm(ht−1Ui + xtWi)

f = sigm(ht−1Uf + xtWf )

o = sigm(ht−1Uo + xtWo)

g = tanh(ht−1Ug + xtWg)

xi ∈ Rdin , yi ∈ Rdout , Ui,Uf ,Uo,Ug ∈ Rdout×dout ,

Wi,Wf ,Wo,Wg ∈ Rdin×dout , i, f ,o,g ∈ Rdout

A bidirectional LSTM model (Graves and Schmidhuber, 2005) consists of two separate LSTMs:
one for the forward and one for the backward direction. When considering an input sequence
x0:n the desired output for word i ∈ N with i ∈ {1, ..., n} is constructed by using the standard
forward sequence x0:i = x1,x2, ...,xi as the input for the first LSTM and the backward sequence
xn:i−1 = xn,xn−1, ...,xi for the second LSTM. The output is a concatenation of both results. This
enables contextual influence from elements preceding and elements following xi.

Definition 4.19 (bi-LSTM notation).
A bi-LSTM is defined as a function where LSTMf and LSTMb denote LSTMs of input dimension
din and output dimension dout:

biLSTM∗(x0:n) = LSTM(x0:n, 1), ..., LSTM∗(x0:n, n)

biLSTM(x0:n, i) = LSTMf (x0:i) ◦ LSTMb(xn:i−1)

xi ∈ Rdin , yi ∈ R2·dout

To construct character-aware embeddings, Coavoux and Cohen (2019) deconstruct tokens into
sequences of individual characters. L denotes the alphabet of all character symbols. Every symbol
gets assigned a character-embeddings:

ce(l) := E[idxL(l)]
char (4.2)

Echar ∈ R|L|×dchar-emb , ce(l) ∈ Rdchar-emb
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Then, for each token wi comprised of character sequence wi,0:m, a biLSTM is used to encode
a context-aware embedding. The backward network focuses on prefixes while the forward network
is more sensitive to suffixes.

c(wi) := biLSTMl(ce(wi,1), ..., ce(wi,m)) (4.3)

c(wi) ∈ Rdchar , ce(wi,j) ∈ Rdchar-emb

Token Representation Coavoux and Cohen (2019) construct a token representation wi as the
concatenation of the character-aware embedding and the word embedding:

wi = c(wi) ◦ e(wi) (4.4)

wi ∈ Rdtoken , dtoken = dchar + dword-emb

Coavoux and Cohen (2019) build context-aware token embeddings by using a 2-layer biLSTM
as a transducer. In this way, the network can capture contextual information regarding preceding
and following tokens in each token vector. The first biLSTM has an input dimension denoted by
dtoken and an output dimension denoted by dhid. The second layer biLSTM has input dimension
dhid and output dimension dhid. The representations for w0:n are computed in the following way:30

m1,0:n = biLSTM∗
1 (w0:n)

m2,0:n = biLSTM∗
2 (m1,0:n) + m1,0:n

(4.5)

wi ∈ Rdtoken , m1,i,m2,i ∈ Rdhid

The first layer output is added to the second layer output as a residual connection. Residual
mappings facilitate the learning of the identity function. Furthermore, they counteract the problem
of exploding and vanishing gradients encountered in deep neural networks (He et al., 2016).31

As shall be seen, the output of the first layer biLSTM is used for the prediction of part-of-speech
tags while the second layer is used to predict parsing actions. The architecture described so far is
depicted in figure 4.4.

4.5.2 Set Representations

There are different possibilities of constructing constituent representations using token vectors.
In projective constituency parsing it is common to use the leftmost leaf and the rightmost leaf
of a constituent (Hall et al., 2014; Crabbé, 2015; Durrett and Klein, 2015). Using the notation
established above such a constituent representation could be defined as follows for a constituent
candidate s:

rproj(s) = m2,min(s) ◦m2,max(s) (4.6)

m2,t ∈ Rdhid , rproj(s) ∈ R2·dhid

In the view of overlapping constituents in discontinuous parsing, Coavoux and Cohen (2019)
suggest enriching the constituent representation with information about gaps in the constituent.
First, they define the following notation for a constituent candidate s, which yields all indices not
in s located between the minimum and maximum of s.

Definition 4.20 (Gap set).
Let s be a constituent candidate.

s := {i | min(s) < i < max(s), i /∈ s}
30Coavoux and Cohen (2019) do not mention the use of a residual connections in their report, however it is

included in the released code. Therefore I introduce an explicit variable ml,t for each layer output (LSTM plus
optional residual connection).

31A more thorough exploration of residual connections is given in section 6.2.2.
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BI2 BI2 BI2 BI2 BI2

BI1 BI1 BI1 BI1 BI1
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Figure 4.4: Stack-free neural parser with shared POS-tagging task architecture. For clarity the
token representations are subscripted with words instead of indices. Figure inspired by Goldberg
(2022, chapter 20.2).

The constituent is now represented using the set boundaries as well as the minimum gap element
and the maximum gap element. A special vector mnil that is randomly initialised and learned as
part of the model is used if the set does not contain a gap.

r(s) =

m2,min(s) ◦m2,max(s) ◦m2,min(s) ◦m2,max(s) if s ̸= ∅,

m2,min(s) ◦m2,max(s) ◦mnil ◦mnil else
(4.7)

mnil,m2,t ∈ Rdhid , r(s) ∈ R4·dhid

This modification enables the model to differentiate between constituents with maximally two
consecutive parts. It is not enough to distinguish constituents with more than one gap, i.e. with
three or more consecutive parts. See the following two equations. The 4-index formalisation does
not consider any intermediate continuous blocks lying between the two outermost gap indices.

s1 = {1, 3, 5}

s1 = {2, 4}

⟨min(s1),max(s1),min(s1),max(s1)⟩ = ⟨1, 5, 2, 4⟩

(4.8)

s2 = {1, 5}

s2 = {2, 3, 4}

⟨min(s2),max(s2),min(s2),max(s2)⟩ = ⟨1, 5, 2, 4⟩

(4.9)

Despite this limitation, one could argue that this notation should be capable of providing
the scorer with adequate information about the form of a constituent since in the DPTB, which
features at most 3 discontinuous blocks, the overwhelming majority of 3 block occurrences is caused
by punctuation (Maier et al., 2012).32

32cf. section 3.1.7
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4.5.3 Action Scorer

Differentiating between structural and labelling actions as odd and even steps allows using two
separate feed-forward networks for action prediction.

Structural actions At a structural step for a configuration c = ⟨ S, sf , i, j,K ⟩ : n ∈ CSC, the
model has to decide between a Combine action with some element in S and Shift. Coavoux and
Cohen (2019) compute the score of a Combine-s action using only the representation of sf and s
as input. The score of a Shift action is computed using sf and {i}, i.e. the element to shift.

These |S|+ 1 scores can be computed in parallel using the following matrix. On the right side
I note the action the row corresponds to.

M =


r(s1) ◦ r(sf )
... ; ...

r(sn) ◦ r(sf )
r({i}) ◦ r(sf )


Combine-s1

...

Combine-sn

Shift

(4.10)

M ∈ R(|S|+1)×8·dhid , r(s) ∈ R4·dhid

The score of an action is predicted using a feed-forward network with initial dropout.33 For
a pair of constituent representations, it computes a single scalar. tanh is used as the activation
function. The weight matrices W1struct,W2structW3struct and the bias vectors b1struct,b2struct

are trained by the model.

FFstruct(a) = h2W3struct

h2 = tanh(h1W2struct + b2struct)

h1 = tanh(a′W1struct + b1struct)

a′ = d⊙ a

d ∼ Bernoulli(dropaction)

(4.11)

a,a′,d ∈ R8·dhid , W1struct ∈ R8·dhid×daction ,W2struct ∈ Rdaction×daction ,

W3struct ∈ Rdaction×1, b1struct,b2struct ∈ Rdaction , dropaction ∈ [0, 1]

A probability distribution over the possible structural actions is generated by applying the
Softmax function on the |S|+1 dimensional output of FFstruct on M. Finally, the model performs
the action corresponding to the highest score.

P (·|c) = Softmax(FFstruct(M)) (4.12)

P (·|c) ∈ R|S|+1, M ∈ R(|S|+1)×8·dhid

Labelling Action At a labelling step with configuration c = ⟨ S, sf , i, j,K ⟩ : n ∈ CSC, |N |+ 1
different actions can be performed, where N is the alphabet of nonterminals. sf can be labelled
with some nonterminal A ∈ N or No-Label can be performed.

An action is predicted using only sf as input for a feed-forward network with an architecture
that corresponds to that of FFstruct with the exception of the input and the output dimensionality.

33A detailed description of the dropout technique is given in Goldberg (2022, chapter 4.6).
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Here, the output is a vector of length |N |+ 1.

FFlabel(a) = h2W3label

h2 = tanh(h1W2label + b2label)

h1 = tanh(s′W1label + b1label)

a′ = d⊙ a

d ∼ Bernoulli(dropaction)

(4.13)

a,a′,d ∈ R4·dhid , W1label ∈ R4·dhid×daction , W2label ∈ Rdaction×daction ,

W3label ∈ Rdaction×(|N |+1), b1label,ba2label ∈ Rdaction , dropaction ∈ [0, 1]

A probability distribution over the possible labelling actions is generated by applying the Soft-
max function on the output of FFlabel on r(sf ) Finally, the model performs the action correspond-
ing to the highest score.

P (·|c) = Softmax(FFlabel(r(sf ))) (4.14)

P (·|c) ∈ R|N |+1, r(sf ) ∈ R4·dhid

4.5.4 POS Tagger

Following Søgaard and Goldberg (2016), POS tagging is performed as an auxiliary task using the
output of the first layer LSTM transducer. A linear transformation is used to predict the POS tag
probabilities for a token. Let A be the alphabet of all POS-tags.

FFP OS(x) = x′WPOS

x′ = d⊙ x

d ∼ Bernoulli(dropP OS)

(4.15)

WPOS ∈ Rdimhid×|A|, dropP OS ∈ [0, 1]

For an input sequence w0:n the probability of a sequence of POS tags t0:n = t1, ..., tn is then
computed as follows:

P (t0:n|w0:n) =
n∏

i=1
Softmax(FFP OS(m1,i))[idxA(ti)] (4.16)

m1,i ∈ Rdhid , FFP OS(m1,i) ∈ R|A|

4.5.5 Objective Function

The word and character embeddings, the LSTM parameters and the parameters of the feed-forward
networks introduced above are optimised during training. The following objective functions deter-
mine the loss that the model is trained to minimise.

Static Oracle For the static oracle given an input sequence w0:n with gold POS-tags t0:n and
gold tree Kg, the sum of the log-likelihood of t0:n and the log-likelihood of gold transition actions
a0:4n−2 given by the oracle with respect to Kg is optimised:

L = Lt + Lp

Lt = −
n∑

i=1
log P (ti|w0:n)

Lp = −
4n−2∑
i=1

log P (ai|(ai−1(...(a1(σ(w1:n))))))

(4.17)
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In practice, Coavoux and Cohen (2019) alternate between optimizing parsing and POS-tagging.
This has been shown by Caruana (1997) to be effective for multitask-learning. At each step, they
provide a sentence from the train corpus and optimise either for parsing or for POS-tagging.

Dynamic Oracle Instead of optimizing the likelihood of the gold actions, in the dynamic setting
Coavoux and Cohen (2019) sample a configuration from the set of all valid configurations. Then
the likelihood of the best action with respect to this configuration given by the dynamic oracle is
optimised.

Before a training epoch, each sentence from the training set is sampled with probability p.
The current parameters are used to parse and retrieve a sequence of configurations. Inspired
by (Ballesteros et al., 2016) at each step an action is chosen randomly based on the softmax
distribution instead of taking the best-scoring action.

Let Choice sample an action randomly based on a tuple of likelihoods. Then the sequence of
(suboptimal) configurations is denoted by d0:4n−2 and generated for an input w0:n as follows.

d1 = Choice(P (·|σ(w0:n)))

di = Choice(P (·|di−1)) for i ∈ {2, ..., 4n− 2}
(4.18)

Finally, the likelihood of the best action determined by the oracle for each step is optimised.

Lp = −
4n−2∑
i=1

log P (o(di)|di) (4.19)

When the oracle predicts more than one best action, one is chosen deterministically as discribed
in section 4.3.2.

4.5.6 Dealing with Unknown Words

Coavoux and Cohen (2019) assign a special UNK word embedding to words that were not observed
during training. UNK is integrated as part of the vocabulary V . To learn a suitable representation
for unknown words, before each training step they replace embeddings that belong to the 2

3 least
frequent words with a probability of 0.3 by UNK.

4.5.7 Training

Coavoux and Cohen (2019) train the model with the averaged stochastic gradient descent (ASGD)
algorithm (Polyak and Juditsky, 1992) for 100 epochs. Every 4 epochs, the model is evaluated
using the development set and saved if the validation F-score surpasses the results of previous
evaluations. This way, degradation by overfitting does not affect the final model.

Coavoux and Cohen (2019) train the model on the DPTB34 using sections 2-21 for train-
ing (39832 sentences), 22 for development (1700 sentences) and 23 for testing (2416 sentences).
Furthermore, they report results for TIGER and NeGra. Table 4.1 gives the total list of hyperpa-
rameters.

4.5.8 Evaluation

The model is evaluated by Coavoux and Cohen (2019) using a dedicated module of disco-dop37

(van Cranenburgh et al., 2016). disco-dop (Discontinuous Data-Oriented Parsing) is an LCFRS
34DPTB7 which sections 5.1 and 5.2 in Evang and Kallmeyer (2011) are based on.
35Xavier refers to a weight initialisation scheme proposed by Glorot and Bengio (2010) that has shown to allow

faster convergence in deep neural networks.
36Gradient clipping is a common technique to prevent the problem of exploding gradients in deep (recurrent)

networks (Pascanu et al., 2013).
37https://github.com/andreasvc/disco-dop

https://github.com/andreasvc/disco-dop
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Architecture hyperparameters
Dimension of word embeddings dword-emb 32
Dimension of character embeddings dchar-emb 100
Dimension of character biLSTM state dchar 100 (50 per direction)
Dimension of sentence biLSTM dhid 400 (200 per direction)
Dimension of hidden layers for action scorer daction 200
Number of action scorer FF layers 3
Number of tagger FF layers 1
Final bias in action scorer FF networks False
Final bias in tagger FF network False

Optimisation hyperparameters
Initial learning rate l0 0.01
Learning rate decay lt

l0
1+t·10−7 , (t is step number)

Dropout for tagger input dropP OS 0.5
Dropout for parser input dropaction 0.2
Training epochs 100
Batch size 1 sentence
Optimisation algorithm ASGD
Word and character embedding initialisation U([−0.1, 0.1])
Other parameters initialisation (incl. LSTMs) Xavier35

Gradient clipping (norm)36 100
Dynamic oracle p 0.15

Table 4.1: Hyperparameters of the model given in Coavoux and Cohen (2019).

parser that comes with tools that aid in the evaluation of parsers for discontinuous treebanks.
Coavoux and Cohen (2019) ignore punctuation and root symbols for evaulation (as set in the

standard evaluation parameters in proper.prm). The evaluation metrics are F-score (F) and F-
score limited to only the discontinuous constituents (Disc. F). A detailed comparison of results is
given in section 6.3.
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5. Explaining Supertags

In the most successful transition-based discontinuous constituent parsing approaches, POS-tags
are jointly learned as an auxiliary task (Coavoux and Crabbé, 2017b; Coavoux et al., 2019). This
strategy was first explored by Søgaard and Goldberg (2016) as an auxiliary task for chunking38

and CCG supertagging39 and adopted for parsing by Coavoux and Crabbé (2017b).
POS-tags very coarsely indicate the relations their carriers can stand in (Jurafsky and Martin,

2009, chapter 5) (e.g. bark marked as a verb gives rise to a different constituent structure than
bark marked as a noun). A hierarchical LSTM network seems to be able to learn useful common
representations for performing both POS tagging and parsing decisions which suggests a strong
relationship between these tasks. I assume that training to predict POS tags from an intermediate
layer leads the model to associate similar vectors to tokens that bear the same POS tag at that
level. This implicitly evokes a distribution over constituent structures. The LSTM networks serve
as a means of lexicalizing this distribution, giving more weight to those structures that occur more
frequently given the surroundings.

Coavoux et al. (2019) note that the unlexicalised Gap-transition parser resolves discontinuities
especially well when a lexical trigger like why in wh-extractions is present. Most unrecognised
discontinuities occur where no token in itself is indicative of a discontinuous structure. In such
cases, the POS-tag assignments are usually not helpful either. See for instance (5.2) where a. is
a discontinuous extraposition taken from the DPTB (evidence and that commissions were paid
belong to one constituent; example given by Coavoux et al. (2019)) and b. a projective sentence
using the same words. The POS tag assignments for each word are the same.

(5.1) a. In
IN

April
NNP

1987
CD

,
,

evidence
NN

surfaced
VBD

that
IN

commissions
NNS

were
VBD

paid
VBN

.

.

b. In
IN

April
NNP

1987
CD

,
,

evidence
NN

that
IN

commissions
NNS

were
VBD

paid
VBN

surfaced
VBD

.

.

Nudging the parser into building more distinct vector representations in such cases by training
to predict fine-grained tag assignments that differentiate the projective and the discontinuous use
of certain words might be beneficial for the ability of the parser to correctly resolve discontinuities.
Supertags could fulfil this role - especially since they were shown to be compatible with POS-tags
in an auxiliary-scenario (Søgaard and Goldberg, 2016).

Furthermore, they could help the parser to recognise types of discontinuous constituents which
occur with a very low frequency. Maier (2015) observe that grammar-based parsers perform well
on low frequency discontinuities while transition-based neural parsers perform poorly. This is not
surprising considering that a multi-layer neural approach needs a lot of data to learn successfully.
The resources available for phenomena that are only sparsely attested in the DPTB simply do not
suffice. Thus, the statistical model, having no restrictions beyond the transition system design,
resorts to erroneous actions. Meanwhile, an exact grammar extraction algorithm builds rules for
all cases that occur in a given corpus. However low their frequency may be, the parser eventually
will apply them if no other more frequent rules yield a successful parse.

Using subparts of structural supertag information to learn representations for certain aspects of
discontinuity may aid in dealing with rare constituent types much akin to the effect that character-
aware word embeddings have on parsing. The idea is to increase the similarity of the vector
representation of items whose syntactic impact is alike in some aspect and reduce the similarity
where it is different. This could help to improve representations for rare combinations of phenomena
and thereby reduce the problem of data availability for rare discontinuities.

38Please refer to Jurafsky and Martin (2009, chapter 13.5) for an introduction to chunking.
39See section 5.2 for an account of CCG supertags.
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In the following, I will first introduce the concept of supertags in the context of combinatory
categorial grammar (CCG). Then I will examine several categories of discontinuous phenomena
in more detail and analyse how CCG supertags may help a discontinuous constituent parser to
correctly recognise them. Finally, I will test my hypothesis by integrating supertags both as an
input feature and as an auxiliary task into the transition-based parser of Coavoux and Cohen (2019)
and explore ways to give a hierarchical model more control over the use of auxiliary information
for the top level task. A thorough analysis of the results will be provided as well.

5.1. Lexicalised Grammar Formalisms

Broadly speaking, grammar formalisms fall into two groups. In the traditional approach, a set
of very simple primitive components is used as a foundation. Operations of varying complexity
and usually large in quantity are then introduced to construct complex structures out of the
primitives. CFG and LCFRS fall into this category where productions serve as the combining
operations and where the set of lexical category types (POS-tags) is very small. Contrasting that,
strongly lexicalised formalisms like lexicalised tree adjoining grammar (LTAG) (Bangalore and
Joshi, 2010a) and combinatory categorial grammar (CCG) (Steedman, 1989, 1996, 2000) follow
an approach called complicate locally, simplify globally (CLSG) (Bangalore and Joshi, 2010a).
They associate the lexical items (i.e. words in a sentence) with informative primitive structures
from which a complex syntactical description of the phrase can be retrieved using a minimal and
language-independent set of combining operations (Bangalore and Joshi, 2010a).

The primitive structures associated with lexical items are called supertags. A supertag localises
information about (a) the number of arguments (b) (type) constraints for the arguments and/or
(c) the positions of the arguments relative to the position of the item bearing the supertag. There
may be several possible supertags associated with one lexical item. In CFGs, this information is
distributed over more than one primitive structure (Bangalore and Joshi, 2010a)

As a result, non-local syntactic dependencies are localised into the primitive structure in CLSG
formalisms. Thus, knowledge of supertags may be beneficial for parsing discontinuous constituents.
In the following, I will give an overview of the CCG formalism and the resulting supertags.

5.2. Combinatory Categorial Grammar

Combinatory categorial grammar (CCG), developed by Steedman (1989, 1996, 2000), is an ex-
tension to categorial grammars (Adjukiewicz, 1935; Bar-Hillel, 1953). The central assumption of
categorial grammars is that constituents are composed using function application. They associate
each word in a sentence with a (complex) function that can receive a word to its left or to its right
as an argument.

CCG extends this formalism by introducing directed versions of combinators originally found
in combinatory logic (Curry, 1930). This approach can be described as a deduction-based logical
framework (Kallmeyer, 2010, chapter 1). It produces constituent-like descriptions and features
a novel strategy to deal with discontinuous phenomena. Its efficient parsibility and its straight-
forward compositional semantic interpretation makes the formalism of computational interest for
covering natural language (Bozsahin, 2013). The following overview of the CCG formalism is based
on Jurafsky and Martin (2023).

In the CCG formalism categories can be atomic elements or functional categories:

Definition 5.1 (Categories).
Let A be a set of atomic elements. The set of categories C is defined as:

• A ⊆ C ,



76

• (X/Y), (X\Y) ∈ C , if X, Y ∈ C ,

• nothing else is in C .

Functional categories represent functions of a single argument category to a desired category.
In (X/Y), the symbol Y is called the argument and X the functor. It means that an element of
type Y is expected to the right of category (X/Y). On the other hand (X\Y) expects an element of
type Y to its left. X is the result of application. The outermost brackets of functional categories
are conventionally omitted.

Usually, the set of atomic elements is small (e.g. sentences and noun-phrases). Verb phrases,
conjunctions and other complex types are realised though complex functional categories (Jurafsky
and Martin, 2023). A lexicon contains assignments from words to sets of possible categories. Due
to ambiguity, the assignments often contain several choices.

Example 5.2.
A minimal example lexicon is given in figure 5.1. Note that lie has two possible categories: N
marks its use as a noun while S\NP allows for a predicative use like in You lie. S\NP is a function
that expects an argument of type NP to its left and returns a category of type S.

you: NP
that: NP

is: (S\NP)/NP
a: NP/N

lie: S\NP, N

Figure 5.1: Minimal example CCG lexicon.

The rules in figure 5.2 define the standard combining operations of most forms of CCG. (>)
and (<) are the rules for forward and backward function application respectively. Forward and
backward composition (>BBB, <BBB) allow combining two functions where one asks for an argument
of type Y and the second gives Y as a result. The resulting function has the return type of the
first function and the argument of the second. Type raising (>TTT, <TTT) converts a category into a
function that receives as argument a function that seeks said category as its argument. Finally the
conjunction operator (<Φ>) allows combining the CONJ category and two elements of the same
type on both sides of the conjunction into a single element of this type.

Rule application for sequences of lexical items is performed on their associated categories in
the style of natural deduction with the restriction that only adjacent elements can be used in
deductions. This way, the deduction process adheres to the principle of adjacency (Steedman,
2000, chapter 4.1) implicitly yielding an ordered tree. The goal is to use up every input element
and to retrieve a single category at the end. The resulting category is the type of the whole
sequence.

A strong argument in favour of the CCG formalism is the compositional semantics that naturally
emerges from it. Interpretations of constituents can be formalised as terms of the λ-calculus
(Church, 1933).40 Every lexical entry is assigned with a λ-expression and each combinator is
given an interpretation within the λ-calculus, e.g. function application for forward and backward
application. Through the replacement of bound variables, the terms of a sentence are brought into
an interpretable logical form and order.

Example 5.3.
Figure 5.3 shows an example CCG derivation for the sentence that is a lie using the lexicon given

40An interested reader is referred to Rojas (2015) for an introduction to the λ-calculus
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Application
X/Y Y

X
>

Y X\Y
X

<

Composition
X/Y Y/Z

X/Z
>BBB

Y\Z X\Y
X\Z

<BBB

Type raising
X

T/(T\X)
>TTT X

T\(T/X)
<TTT

Conjunction
X CONJ X

X
<Φ>

Figure 5.2: Rules for CCG. X, Y, Z and T are category variables.

in figure 5.1. To the right, a tree visualisation of the constituents in the CCG derivation is given.
As can be seen, this analysis amounts to the canonical CFG derivation tree for this sentence.

Function application allows to fill in the argument slot of a category. Take for instance is and
its category (S\NP)/NP. It requires an NP category to the right. Applying (>) on (S\NP)/NP and
on category NP to the right yields the functor S\NP.

that is a lie
NP (S\NP)/NP NP/N N

>

NP
>

S\NP
<

S

S

NP

that

S\NP

(S\NP)/NP

is

NP

NP/N

a

N

lie

Figure 5.3: Example for CCG function application.

Figure 5.4 shows an example for forward composition (>BBB) and forward type-raising (>TTT)
using the same supertag assignments for the sentence that is a lie. The category (S\NP)/NP is
combined with NP/N via composition. (S\NP)/NP requires an argument of type NP while NP/N
provides category NP if provided with N. Composition allows it to combine both items before filling
missing arguments. The argument requirement of the category on the right is inherited by the
resulting category (S\NP)/N.

NP is type-raised to a complex function yielding S and expecting a category that looks for an
NP to its left with functor S. This way, an argument takes the syntactic role of a functor (Koller
and Kuhlmann, 2009). In this way, forward composition can be used to fill the left argument slot
of a VP before the right one. Here, that is combined before lie.

Note the equivalent tree structure to the right in figure 5.4. Grouping together a verb and
a determiner or attaching the subject at a lower level than the object contradicts the canonical
constituent analysis found in S-bar-inspired constituency trees. Both CCG tree descriptions are
licensed by the same CCG lexicon in combination with the minimal set of combinatory rules. It
becomes apparent that the formalism produces constituents that are not comparable with our
traditional notion of constituency.
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that is a lie
NP (S\NP)/NP NP/N N

>TTT >BBB
S/(S\NP) (S\NP)/N

>BBB
S/N

<

S

S

S/N

S/(S\NP)

NP

that

(S\NP)/N

(S\NP)/NP

is

NP/N

a

N

lie

Figure 5.4: Example for CCG composition and type raising.

Example 5.4.
Composition and type-raising are not necessary to analyse the sentence in example 5.3. In other
cases, like in coordination of non-canonical constituents they are argued to be required tools (Steed-
man, 2000, chapter 3). Figure 5.5 shows an example. Here, Laura and a gift as well as Tommy and
an invoice, in both cases two elements with type NP, combine via type-raising and composition.
Laura is type-raised to expect a ditransitive VP to its left and to return a transitive VP. a gift is
type-raised to expect a transitive VP to its left and to return an intransitive VP. Then, the two
type-raised terms are combined via backward composition. Doing the same for Tommy and an
invoice allows using the conjunction operator (<Φ>) for these non-constituents.

The two combinators play an important role in dealing with long-range dependencies which I
will analyse in the following subsection.

I sent Laura a gift and Tommy an invoice
NP ((S\NP)/NP)/NP NP NP/N N CONJ NP NP/N N

<TTT >
(((S\NP)/NP)\(((S\NP)/NP)/NP) NP

<TTT
(S\NP)\((S\NP)/NP) ...

<BBB <BBB
(S\NP)\(((S\NP)/NP)/NP) (S\NP)\(((S\NP)/NP)/NP)

<Φ>
(S\NP)\(((S\NP)/NP)/NP)

<
S\NP

<
S

Figure 5.5: Coordinative use of type-raising and composition in CCG.

As became apparent, type raising and coordination allow any substring in a sentence to form
a constituent (Houtman, 1994, 63–85).41 This enables strict left-to-right derivation of sequences
which is argued by Jurafsky and Martin (2023) to be a desirable feature from a psycholinguistic
point of view since it resembles the way humans process language. Cases of derivational ambi-
guity where the same input sequence with the same supertag assignments can be reduced to the
same category are claimed by (Lewis and Steedman, 2014) to license an identical same semantic
composition in many cases.

A key argument of the proponents of CCG as a theory of grammar is that there is no necessity
to model several layers of syntactic representation to account for a transformation from a deep
form grouping together the words in a sentence that belong together in terms of our intuition of
meaning, and from which a semantic representation can be extracted, to a surface form cluttered
with discontinuities, scrambling or other phenomena inert to human utterance while adhering to
the reflection of a narrow definition of constituency in the syntactic representation. Instead, syntax
should be treated as a transparent interface between spoken language and logical form (Steedman,
2000, chapters 1 and 2). CCG is a monostratal grammar formalism in the sense that it features

41This only holds if type-raising is not restricted to some limited set of operations as explained by Steedman
(2000, chapter 4).
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only one syntactic level of representation with the goal of assigning every syntactic rule with a
semantic rule applied in parallel (Steedman, 2000, chapter 1). Since it aims at describing the
competent composition of a semantic form, over-generation of spuriously ambiguous derivational
structures is not considered problematic.

While in contrast the discontinuous constituent structure found in the DPTB is very strict and
designed to exhibit one clear derivational analysis per phenomenon, its motivation for analysing
constituents as discontinuous and not as instances of a separate movement process as employed
by Chomsky (1975) and grammatical traditions alike is similar to that of CCG: constructing only
one syntactic level of representation. Discontinuous tree descriptions achieve this by loosening the
adjacency requirement of constituency while maintaining a narrow requirement for what can form
a constituent based on semantic intuition. This precisely leads to the necessity of mild context-
sensitive generative devices like LCFRS. In CCG the idea is executed by binding arguments into
predicate-argument structure while combining adjacent words into syntactic constituents result-
ing in a semantic expression that does not necessarily correspond with the sentence word order
(Steedman, 2000, Chapter 3).

My hope is that the strong correspondence of syntactic rules and semantic function application
inherent to CCG categories as well as the fact that word order is projected entirely from the lexicon
might enable a neural model to retrieve information about the predicate-argument structure from
lexical category assignments that motivated the notion of constituency found in discontinuous
treebanks.

5.2.1 CCG Treebanks

The CCGbank (Hockenmaier and Steedman, 2007) is a version of the Penn Treebank annotated
with CCG supertags and derivations. It was automatically extracted from the Penn Treebank and
contains 48,934 fully annotated sentences as well as a lexicon of 44,000 words. Sections 2-21 feature
1,286 distinct lexical category types.

CCGbank differs from the pure CCG presented above. It uses features to distinguish different
types of primitive categories such as S[dcl] for declarative sentences and S[q] for yes-no questions.
Furthermore, it introduces a range of special combinatory rules, some of which deal with punctua-
tion, others allow unary category changes, e.g. from N to NP. Without further specification, I will
use the notation (<rrr>) for all punctuation rules and (<uuu>) for all unary rules.

Honnibal et al. (2010) revised the original CCGbank by introducing a more precise analysis
of compound nouns, verb argument structure, verb-particles and noun-arguments. Furthermore,
they reintroduced quotation marks which were previously removed by Hockenmaier and Steedman
(2007). The resulting treebank is known as CCGrebank and features 1,574 distinct lexical category
types in sections 2-21. I will base my analysis of discontinuous phenomena in section 5.3 on a
comparison of derivation examples in DPTB and in CCGrebank.

5.2.2 Supertaggers and Parsers

The lexicalised nature of combinatory categorial grammar allows for a unique approach to parsing
for the formalism. Usually, a word is assigned more than one category in a CCG lexicon. This
fact and the non-standard notion of constituency have the effect that a sentence can yield a large
number of different parses. This problem can be approached by assigning lexical categories in a
pre-parsing step using a statistical supertagger. Bangalore and Joshi (1999) call this an approach
to almost parsing. Since the set of combinators is kept minimal and the syntactic information
inherent in supertags is so rich most ambiguities are resolved through the assignment of adequate
supertags.
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The idea of using a dedicated supertagger before parsing to narrow down the space of possible
supertag assignments for an input sequence was first explored by Bangalore and Joshi (1999)
for LTAG and adapted by Clark and Curran (2010) for parsing CCG. Note, however, that some
ambiguity remains that is not resolved through supertagging (cf. example 5.3).

Lewis and Steedman (2014) propose a new CCG parsing strategy that allows for an efficient
A∗ search by assuming that the optimal CCG parse for a sentence is determined by the highest
probability supertag assignment. Then, they use a heuristic to eliminate spurious derivational
ambiguity. They use 511 unique supertags and a total of 23 combinatory rules. Their model is
trained on sections 02-21 of CCGbank.42

Yoshikawa et al. (2017) propose an extension to this parser called depccg43 that resolves spuri-
ous attachment ambiguity by jointly modelling a dependency structure. Their model successfully
approaches cases where spurious ambiguity indeed leads to a difference in semantic representation.
They illustrate this problem by help of the Japanese example reproduced in figure 5.6.

Yesterday buy–PAST curry–ACC eat–PAST
Kinoo kat–ta karee–wo tabe–ta
S/S S NP S\NP

>

S
<uuu>

NP/NP
>

NP
<

S

Yesterday buy–PAST curry–ACC eat–PAST
Kinoo kat–ta karee–wo tabe–ta
S/S S NP S\NP

<uuu>

NP/NP
>

NP
<

S
>

S

Figure 5.6: Spurious ambiguity in CCG derivations that leads to distinct semantic representations;
adapted from Yoshikawa et al. (2017). The English translation is I ate the curry I bought yesterday.
yesterday can refer to either bought or ate.

Alongside the standard parser trained on the original CCGbank which they describe in their
paper, Yoshikawa et al. (2017) also release a model trained on the CCGrebank, which I will use as
a supertagger in the pipeline approach presented in section 6.1.

5.3. Discontinuous Constituents and CCG

Due to its monostratal nature, CCG deals differently with phenomena that are traditionally anal-
ysed to exhibit discontinuous constituents. Being a lexicalised approach, the recipe for dealing
with discontinuities is largely (with the exception of the combining rules) encoded in the assigned
supertags. In the following, I will take a closer look at the way CCG resolves sentences in non-
standard word order and explore the relationship with common discontinuous constituent analyses
from the DPTB.44

Several suggestions were made to account for discontinuous constituents using the CCG frame-
work. One example is the introduction of infixation points and wrap and infix operations, see
Warstadt (2015) for a recent proposal. It introduces the notion of discontinuity by weakening the
formalism’s principle of adjacency (Steedman, 2000, chapter 4.1). Since annotated corpora for non-
standard proposals are generally unavailable, I will only focus on the handling of discontinuities
by CCG in the form described above.

Evang (2011) enumerates six classes of discontinuities found in the DPTB. Coavoux et al. (2019)
revise these categories resulting in the following list and example phrases:

42https://github.com/mikelewis0/easyccg
43https://github.com/masashi-y/depccg
44In the following derivation examples pre-terminal nodes are regularly omitted for reasons of space. In most

cases only extracts of the full trees are shown.

https://github.com/mikelewis0/easyccg
https://github.com/masashi-y/depccg
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1. wh-extraction: What should I do?

2. fronted quotations: Absolutely, he said.

3. extraposed dependent: In April 1987, evidence surfaced that commissions were paid.

4. circumpositioned quotations: In general, they say, avoid takeover stocks.

5. it-extrapositions It’s better to wait.

6. subject-verb inversion Said the spokeswoman: “The whole structure has changed.”

Note that terms like movement and extraction are not meant to allude to a specific grammatical
theory that uses the notion of movement as a syntactic operation but only to refer to syntactic
phenomena metaphorically.

5.3.1 Wh-movement

Wh-movement denotes the non-canonical word-order correlated with the use of interrogative words
like what and why. The wh-word is placed at the front of the sentence or clause instead of the
position it would be expected in with respect to its grammatical function. Take for example (5.2b)
where this, the direct object of do, is found in the standard position, following the predicate.
Compare this with (5.2a) where What, corresponding to do, is positioned at the beginning of the
sentence.

(5.2) a. What should I do?

b. I should do this.

Figure 5.7 shows the analysis for the sentence What should I do? in the DPTB as well as in
CCGrebank. In the constituent tree, the fronted wh-word What is attached at the level of the
VP that directly dominates the verb do. In the CCG analysis, the subpart should I do is derived
first via forward application and composition. The resulting category S/NP expects an object
NP in standard position to its right. The discontinuity is dealt with by assigning what a higher-
order function: S/(S/NP). It fills the missing argument slot by simply “consuming” the incomplete
sentence.

This supertag assignment could give a discontinuous constituent parser a hint: It could learn
to identify the fact that the right NP argument slot of do is not removed by combination with
the two items on its left. It could then conclude from the supertag assignment of the first word,
S/(S/NP), that it should be used as a filler of this argument slot promoting a Merge operation
between What and do before merging with should or I.

SBARQ

SQ

VP

WHNP

What should

NP

I do ?

What should I do ?
S[wq]/(S[q]/NP) (S[q]/(S[b]\NP))/NP NP (S[b]\NP)/NP .

>

S[q]/(S[b]\NP)
>BBB

S[q]/NP
>

S[wq]
<rrr>

S[wq]

Figure 5.7: Wh-movement. Derivation in the DPTB (on the left) and in CCGrebank (on the right).
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Sentences, where the wh-word asks for the subject, are usually projective. The first position
corresponds with the subject position and so the supertag assignment differs compared to the
previous case. This can be seen in figure 5.8. Here, What expects a sentence with a missing NP in
left position. One can clearly differentiate the projective and the unprojective case on the basis of
supertag assignments.

What are the facts on this type of lending ?
S[wq]/(S[dcl]\NP) (S[dcl]\NP)/NP NP/N N/PP PP/NP NP/N N/PP PP/NP N .

<uuu>

NP
>

PP
>

N
>

NP
>

PP
>

N
>

NP
>

S[dcl]\NP
>

S[wq]
<rrr>

S[wq]

Figure 5.8: Wh-word that asks for the subject from CCGrebank.

Wh-movement also occurs in relative clauses. Figure 5.9 shows a DPTB derivation for the
nominal phrase federal statutes that the Supreme Court invalidated. Here that acts as an object of
the verb. The subject the Supreme Court blocks a projective analysis.

The CCGrebank analysis, given in figure 5.10, is similar to figure 5.7: The subject and the verb
are first composed into a non-standard constituent by use of type-raising and composition that
then serves as an argument for that. Interrogative words like what and which are also assigned
the category (N\NP)/(S[dcl]/NP) when they occur in this kind of construction. It differs from the
assignment in questions in that it does not return a sentence type but type N\N that makes it
function as a modifier of a preceding noun.

NP

NP

federal statutes

SBAR

S

VP

WHNP

that

NP

the Supreme Court invalidated

Figure 5.9: Relative clause with that-fronting in DPTB annotation.
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federal statutes that the Supreme Court invalidated
N/N N (N\N)/(S[dcl]/NP) NP/N N/N N (S[dcl]\NP)/NP

> >

N N
>

NP
>TTT

S/(S\NP)
>BBB

S[dcl]/NP
>

N\N
<

N

Figure 5.10: Relative clause with that-fronting in CCGrebank annotation.

that is given a different supertag when it does not accompany a relative clause but is used as
a demonstrative pronoun (see figure 5.11) or as a conjunction in a complement clause (see figure
5.12). Coavoux et al. (2019) point out that the ambiguity of that-clauses is a notable source of
error concerning wh-movement. Supertag information may enable the parser to better differentiate
between the structurally distinct uses of that.

That ’s good news for marketers of walking shoes .
N (S[dcl]\NP)/NP N/N N (S\NP)\(S\NP)) .

<uuu> >

NP N
<uuu>

NP
>

S[dcl]\NP
<

S[dcl]\NP
<

S[dcl]
<rrr>

S[dcl]

Figure 5.11: Example for the use of that as a demonstrative pronoun with the corresponding
derivation in CCGrebank.

I know that I ’m shouting into the breeze here as far as what we ’re doing now
NP (S[dcl]\NP)/S[em] S[em]/S[dcl] S[dcl]

>

S[em]
>

S[dcl]\NP
<

S[dcl]

Figure 5.12: Example for the use of that as a conjunction in a complement clause including the
derivation from CCGrebank.

Another import reason for parsing-errors in wh-extracted phrases, according to Coavoux et al.
(2019), is ambiguity on the extraction site, i.e. the node the fronted question word should attach
to to form a discontinuous constituent. As an example they mention the phrase which many clients
didn’t know about for which the DPTB analysis and its CCGrebank counterpart are given in figures
5.13 and 5.14 respectively.45 Their parser commits the error of treating which as an argument of
know. Given the correct CCG analysis, it would be immediately clear that the fronted phrase
must attach to about since know does not posses an NP argument. Direct attachment of What to
know would be licensed by a different supertag, namely (S\NP)/NP. Supertag information could
therefore help to resolve extraction site ambiguities of this kind.

45The CCGrebank analysis uses the backward crossed composition combinator <BBB× here. Please refer to Steed-
man (2000, chapter 3) for more information on it.
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S

VP

VP

PP

WHNP

which

NP

many clients did n’t know about

Figure 5.13: DPTB example for wh-fronting with attachment ambiguity (PP vs. VP)

which many clients did n’t know about
(NP\NP)/(S[dcl]/NP) N/N N (S[dcl]\NP)/(S[b]\NP) (S\NP)\(S\NP) (S[b]\NP)/PP PP/NP

> <BBB× >BBB
N (S[dcl]\NP)/(S[b]\NP) (S[b]\NP)/NP

<uuu> >BBB
NP (S[dcl]\NP)/NP

>TTT
S/(S\NP)

>BBB
S[dcl]/NP

>

NP\NP

Figure 5.14: CCGrebank derivation corresponding to the phrase in figure 5.13.

Unfortunately, supertags are not always that informative for retrieving the exact discontinuous
constituent structure. Figure 5.15 depicts a DPTB analysis containing the fronted adverbial phrase
How deeply. It is, just like in the previous example, analysed as a daughter of the VP node.
Compare this with the CCGrebank analysis in figure 5.16. Here, How deeply is simply treated as
a sentential modifier for the rest of the phrase. Neither is it associated with the subject-less verbal
phrase S[b]\NP nor is there an indicator for the fact that it is to be placed at a lower level since
the phrase on its right does not show any missing arguments.

This also happens for other extractions of features realised as adjuncts (prepositional and
adverbial phrases) instead of arguments of right-side components. I assume that the parser will
be able to infer from the appearance of do in a sentence that the preceding sentential modifier
most likely refers to a constituent to the right of do. Nonetheless, if there was more than one valid
option for attachment beyond do, supertags would not help in resolving such an ambiguity.

SBARQ

SQ

VP

WHADVP

How deeply do

NP

they read

NP

it ?

Figure 5.15: DPTB derivation of a sentence that contains a wh-word that asks for an adverbial
phrase.
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How deeply do they read it ?
(S[wq]/S[q])/(S[adj]\NP) S[adj]\NP (S[q]/(S[b]\NP))/NP NP (S[b]\NP)/NP NP .

> > >

S[wq]/S[q] S[q]/(S[b]\NP) S[b]\NP
>

S[q]
>

S[wq]
<rrr>

S[wq]

Figure 5.16: CCG derivation of the sentence How deeply do they read it? in the CCGrebank.

5.3.2 Fronted Quotations

Since the Penn Treebank is based on newspaper articles, it features a lot of quotations (Evang,
2011) - some of which result in discontinuous structures. Figure 5.17 shows an example of a fronted
quotation from the DPTB. The phrase framed by quotation marks is analysed as a complement
of said. The two elements are separated by a gap containing a comma and the closing quotation
marks as well as the subject of said which are all attached one level higher in the tree.

S

“

VP

S

NP

There

VP

is

NP

NP

a large market

PP

out

NP

there

ADJP

hungry

PP

for

NP

hybrid seeds , ”

NP

he said .

Figure 5.17: Discontinuous fronted quotation in the DPTB.

Figure 5.18 shows the CCGrebank analysis of the sentence. In the CCGrebank, opening and
closing quotation marks are assigned special categories: LQU and RQU respectively. They are
removed by use of (<rrr>) and thus cannot serve as an explicit indicator of the fronted quotation.
The non-standard word-order is resolved through the category assignment of said. It expects as
an inner argument a sentential category to its left. The first argument is the subject in standard
position. This necessarily means that an intermediate constituent must be constructed by providing
its subject he before merging with the quotation which is opposite to the order of the DPTB
analysis.

Nevertheless, the supertag assignment can be an indicator for the constituent parser since it
differs from the projective case where the quotation is positioned to the right as can be seen in the
partial derivation in figure 5.19. Here the order of derivation still does not reflect the canonical
analysis but the supertag assignment conforms to the fact that the quotation is expected directly
to the left without intermediate arguments. Thus, supertag information could help to resolve
discontinuities caused by fronted quotations.
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“ There is ... hybrid seeds , ” he said .
LQU S[dcl] , RQU NP (S[dcl]\S[dcl])\NP .

<rrr> <

S[dcl] S[dcl]\S[dcl]
<rrr>

S[dcl]
<rrr>

S[dcl]
<

S[dcl]
<rrr>

S[dcl]

Figure 5.18: Fronted quotation in CCGrebank.

“ The development ... especially cotton , ” said Murray Robinson
LQU S[dcl] , RQU (S[dcl]\S[dcl])/NP N/N N

<rrr> >

S[dcl] N
<rrr> <uuu>

S[dcl] NP
<rrr> >

S[dcl] S[dcl]\S[dcl]
<

S[dcl]

Figure 5.19: Projective fronted quotation with CCGrebank derivation.

5.3.3 Extraposed Dependents

The category of extraposed dependents mainly contains discontinuities that arise from appended
clauses that refer to some preceding word. Contrary to wh-extractions and fronted quotations, no
lexical trigger is present (Coavoux et al., 2019). Figure 5.20 shows an example where a subordinate
clause is appended after the predicate of the main clause but relates to its subject.

S

PP

In

NP

April 1987 ,

NP

evidence

VP

surfaced

SBAR

that

S

NP

commissions

VP

were paid .

Figure 5.20: Extraposed subordinate clause from DPTB.

The CCGrebank analysis is shown in figure 5.21. Here, the subordinate clause that commissions
were paid functions as an adjunct to the predicate surfaced. The lexical category of that expects a
sentence to its right and as inner argument a VP (i.e. S[dcl]\NP) to its left, returning a VP. Then,
the NP evidence is realised as a regular argument.

The attachment of the relative clause at the level of the NP cannot be recovered from this
analysis. In fact, the same supertag assignment is given when the extraposed clause actually
attaches at VP level in the DPTB analysis, see figure 5.22. Thus, the parser could be tempted to
attach the extraposed clause incorrectly in one of the cases purely based on distributional properties
of the corpus.



87

In April 1987 , evidence surfaced that commissions were paid
(S/S)/NP N N\N , N S[dcl]\NP ((S\NP)\(S\NP))/S[dcl] N (S[dcl]\NP)/(S[pss]\NP) S[pss]\NP

< <uuu> <uuu> >

N NP NP S[dcl]\NP
<uuu> <

NP S[dcl]
> >

S/S (S\NP)\(S\NP)
<rrr> <

S/S S[dcl]\NP
<

S[dcl]
>

S[dcl]

Figure 5.21: Extraposed subordinate clause in CCGrebank notation.

The young president so admires Japanese discipline that he sends ... .
NP/N N/N N (S\NP)/(S\NP) (S[dcl]\NP)/NP N/N N ((S\NP)\(S\NP))/S[dcl] S[dcl] .

> > >

N N (S\NP)\(S\NP)
> <uuu>

NP NP
>

S[dcl]\NP
<

S[dcl]\NP
>

S[dcl]\NP
<

S[dcl]
<rrr>

S[dcl]

Figure 5.22: CCGrebank derivation where the subordinate clause that he sends ... is also a modifier
to the VP in the corresponding DPTB annotation.

This unhelpful analysis is not limited to the conjunctive use of that. The same supertag is
assigned to than in (5.3). The parser may be able to infer from the distribution of such cases that
the extraposed clause should not form a direct constituent with the verb since than rarely modifies
a VP. With that being said, the supertags are neither aiding in such cases nor do they help in
resolving attachment ambiguity past the verb boundary. See for instance the CCG derivation in
figure 5.23 that would correspond to three distinct DPTB analyses. The extraposed clause could
be attached to anything, the fundamentals or our business.

(5.3) In any case, the firms are clearly moving faster to create new ads than they did in the fall.

Note that this issue does not arise from derivation ambiguity as explored in example 5.3 and
in figure 5.6. It is either that the annotations in CCGrebank simply do not treat such phenomena
properly or that the CCG formalism itself cannot appropriately account for discontinuities of this
kind. While there is, by formulation of its objective, no necessity for CCG to make discontinu-
ous constituents deducible from lexical category assignments; nonetheless, the observed behaviour
does not live up to the paradigm of the formalism. Steedman (2000, chapter 2.1) postulates that
every syntactic rule shall have a semantic representation. In our case, several different semantic
representations arise from exactly the same syntactic operation of backward application. Applying
((S\NP)\(S\NP))/(S[dcl]\NP) would prescribe that the meaning of its right argument be associ-
ated with the object of the verbal phrase on its left in figure 5.23, with its missing left NP argument
in figure 5.21 and with the verbal phrase as a whole in figure 5.22. Alternatively one could as-
sume that in each of these cases, that refers to a distinct lexicon entry with a distinct semantic
representation. While this is reasonable in the case of the VP modifier in figure 5.22, it is at least
questionable for figures 5.21 and 5.23 that only differ in regards to the function the NP, modified
by the extraposed clause, serves (i.e. which argument slot of the VP it fills).
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There is also a rare case of fronted extrapositions without a lexical indicator in the form of
a wh-word. This happens when an argument or an adjunct appears before the subject and the
verb and is attached at VP level instead of S (Evang, 2011). Figure 5.25 shows an example. Here,
CCGrebank treats the extraposed part as a sentential modifier in the same way as And is treated.
Since cases like this are very infrequent, I predict this shortcoming to have a negligible effect on
the score of a supertag-enriched parser.

S

And

VP

ADVP

so

NP

it was

PP

on

NP

Gray Friday .

Figure 5.25: Fronted extraposition with the DPTB annotation.

And so it was on Gray Friday .
S/S S/S NP S[dcl]\NP ((S\NP)\(S\NP))/NP N/N N

>

N
<uuu>

NP
>

(S\NP)\(S\NP)
<

S[dcl]\NP
<

S[dcl]
>

S[dcl]
>

S[dcl]
<rrr>

S[dcl]

Figure 5.26: Fronted extraposition with the CCGrebank annotation.

5.3.4 Circumpositioned Quotations

Figure 5.27 shows an example of a circumpositioned quotation from the DPTB. The two parts of
the quotation Working with lawyers and I need it are dominated by a common parent S which is
assigned as a complement to the intermediary verb says to form a VP. The structure is similar to
the fronted quotation with the addition of a tail expression.
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S

VP

S

“

S

VP

Working

PP

with

NP

lawyers , ”

NP

she says , “

NP

I

VP

need

NP

it . ”

Figure 5.27: Circumpositioned qutoation and its DPTB analysis.

“ Working with lawyers , ” she says , “ I need it . ”
LQU S/S , RQU NP (S[dcl]\NP)/S[dcl] , LQU S[dcl] . RQU

<rrr> >TTT <rrr> <rrr>
S/S S/(S\NP) S[dcl] .

<rrr> >BBB
S/S S[dcl]/S[dcl]

<rrr> ?
S/S S/S

<rrr>
S/S

>

S[dcl]
>

S[dcl]
<rrr>

S[dcl]

Figure 5.28: Circumpositioned quotation and its CCGrebank analysis.

The corresponding CCGrebank analysis shown in figure 5.28 is problematic. The substring she
says, “I need it.” is analysed like a regular quotation in standard position yielding an S category.
Thus, the prepended participle construction takes as argument not only the right sub-quote but
also the quotative verb and its subject. No supertags give any indication of a circumpositioned
arrangement.

The structure is, with the exception of an additional pair of quotation marks, indistinguish-
able from a sentence like Reluctantly he said, “I want to go.” where Reluctantly would receive
category S/S. Therefore, I suspect that supertag information will not help the parser to resolve
circumpositioned quotations. In the worst case, it might even mislead it.

The presence of quotation marks will probably counteract such an analysis. However, as
Coavoux et al. (2019) points out, there are cases of circumpositioned quotations without quo-
tation marks that are already hard to resolve by an unmodified neural model. Here, supertag
information should be least beneficial.

In other cases, the CCG analysis is even more questionable. Figure 5.24 shows a case where
the quotative verb and its subject are treated as a modifier of a preceding NP inside the quotation.
This is done by converting the S[dcl]/S[dcl] category of Mr. Jones says into NP\NP by some
unary rule. The supertag assignments alone suggest that Mr. Jones says should be followed by
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an S category. This could mislead the parser since the predicate can actually be found to the left.
Overall, I assume supertag information on the basis of the CCGrebank relating to circumpositioned
quotations to be of little informative value for the parser.

5.3.5 It-Extrapositions

It-extrapositions denote cases where an expletive, i.e. semantically empty, it is found in the
standard-place of a clausal argument that is instead positioned at the end of the sentence (Evang,
2011). See (5.4) for an example. The extraposed clause could be regarded as specifying it seman-
tically and is therefore analysed as one common discontinuous NP in the DPTB.

(5.4) a. It is easy to forget something.

b. To forget something is easy.

Figure 5.29 shows the DPTB analysis of part of the direct quotation in (5.5a) to know what to
expect at this point and It are dominated by a common NP node.

(5.5) a. “It’s hard to know what to expect at this point,” said Peter Rogers, an analyst at Robert-
son Stephens & Co.

b. It is also likely to bolster fears that the Japanese will use their foothold in U.S. biotech-
nology to gain certain trade competitive advantages.

Figure 5.30 shows the CCGrebank counterpart. Here, to know what to expect has category
S[to]\NP and thus expects an NP to its left. This is in line with the canonical analysis of it and the
extraposed clause forming an NP constituent. However, due to the discontinuity, this argument
slot cannot be filled. Instead, the lexical category assigned to ’s deals with both elements. To
account for to know what ... with category S\NP, ’s has a second, inner right argument.

While the subject it functions as a regular, innermost NP argument of the predicate and while
the non-finite clause is also realised as an argument of ’s, the specialised supertag assignment in
itself could still give the parser an indication to merge the preceding NP it when to know what ...
is the focus item before merging ’s. This clue is even stronger when including category features.
The NP category of It is marked with the feature [expl], as is the left argument slot of ’s. Thus, the
parser could learn to associate this supertag with the necessity to find a discontinuous appended
clause. The supertag assignments could further specify the boundaries between the projective parts
and the extraposed clause in such a scenario.

This assumption is solidified by the fact that the projective use of infinite clauses as an adjectival
modifier in combination with It is is tagged differently in the CCGrebank. Take for instance (5.5b)
for which figure 5.31 shows part of the CCGrebank derivation. Here, the adjective likely receives
a different supertag than hard in the last example. It expects a non-finite to-clause to its right
as an additional argument. Consequently, is does not require a non-finite clause as a second right
argument here. When one considers categorial feature the difference is even more pronounced
since the NP and its corresponding argument slot lack the [expl] feature. Therefore, I expect the
parser to be able to infer useful information for the treatment of it-extrapositions from supertag
information.

5.3.6 Subject-Verb Inversion

Subject-verb inversion is an infrequent class of discontinuities where the subject can be found
between the predicate on the left and one of the verb dependents on the right Evang (2011). It
occurs mainly in combination with quotations and thus can be considered as the reverse case of
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S

NP

NP

It

VP

’s

ADJP

hard

S

VP

to

VP

know

SBAR

S

VP

VP

WHNP

what to expect

PP

at

NP

this

NN

point

Figure 5.29: DPTB analysis of an it-extraposition.

fronted quotations. Figure 5.32 shows an example where the quotative verb Said takes the initial
position in the sentence.

The corresponding CCGrebank analysis is shown in figure 5.33. Here, the lexical category
assignment of Said accounts for the reversed argument structure. A manual analysis showed that
the category (S[dcl]/S[dcl])/NP is only assigned in cases of subject-verb inversion with quotations.
It should therefore be a useful hint for the parser.

When disregarding the category feature [dcl], (S/S)/NP is also used for prepositions in front
position sentential modifiers. The following sentence gives an example where In is assigned the
category (S/S)/NP in the CCGrebank.

(5.6) In any case, supplies to patients won’t be interrupted, the company added.

Following the category, In first accepts any case as an NP-argument and after that the S-
argument supplies to patients won’t be interrupted. This derivation order corresponds to the pro-
jective analysis found in DPTB. While the neural model might learn a correlation between the
supertag and verbs of speech, I do not assume that supertag information will benefit the analysis
of subject-verb inversion when the feature [dcl] is dropped. In the worst case, it could produce
noise that pushes the parser towards analysing the quotative verb and the subject as a modifier of
the quotation.
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SINV

VP

Said

NP

the spokeswoman : “

S

NP

The whole structure

VP

has

VP

changed .

Figure 5.32: Example sentence for subject-verb inversion in the DPTB.

Said the spokeswoman : “ The whole ... changed .
(S[dcl]/S[dcl])/NP NP/N N : LQU S[dcl] .

> <rrr>
NP S[dcl]

>

S[dcl]/S[dcl]
<rrr>

S[dcl]/S[dcl]
>

S[dcl]
<rrr>

S[dcl]

Figure 5.33: Example sentence for subject-verb inversion in the CCGrebank.

5.3.7 Summary

In the preceding paragraphs, I provided a detailed analysis of the treatment of discontinuous phe-
nomena in the DPTB and in the CCGrebank. Furthermore, I explored the relationship between the
two approaches concerning the information supertags may give a discontinuous constituent parser
to construct correct parses for long-range phenomena. The analysis has shown that CCG supertags
may be beneficial for resolving some types of discontinuities, namely wh-movement, fronted quota-
tions and it-extrapositions. On the other hand, the analysis did not show a transparent correlation
in the case of circumpositioned quotations, extraposed dependents and subject-verb inversion and
in some cases even suggested a negative effect. Noteworthy is the result that quotations seem to be
particularly difficult to resolve for the CCG formalism and that they are inconsistently analysed
in the CCGrebank.

In their analysis of the ML-Gap parser, Coavoux et al. (2019) found that wh-extractions and it-
extrapositions are, in absolute figures, the second and third largest sources of false negatives among
the discontinuous phenomena. Due to the transition system and the neural network implementation
being similar to the stack-free approach (Coavoux and Cohen, 2019) serving as the base for the
following experiments, I expect the integration of supertag information to reduce these numbers.

Coavoux et al. (2019) report that extrapositions are the third largest class of discontinuities in
the DPTB development split while they account for half of the false negatives their model produces.
Unfortunately, deviating from my initial assumption, in many cases the supertags assigned in
CCGrebank can not accurately account for attachment ambiguities with extraposed dependents.
This class therefore most likely will remain to pose a challenge and as Coavoux et al. (2019) note,
in many cases world-knowledge would be needed to resolve such cases.

It is important to point out that this prognosis is based on the assumption that the system
is provided with gold supertags on the basis of CCGrebank. The actual performance will be
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dependent on the accuracy and style of implementation of the supertags and the variety of CCG,
for instance whether categorial features are included.

On a general note not limited to discontinuities, supertag assignments alone can not be expected
to help a constituent parser where they lead to spurious attachment ambiguity in their own right.
Take for instance the case of figure 5.6 which was briefly discussed in the previous section. A
constituent parser could not infer at what depth an attachment would be preferable based on the
lexical category assignment. To deal with such cases, it might be beneficial to include information
about gold parsing attachments in CCGrebank as a feature by enriching the supertags or training
an additional auxiliary task.

A related area for exploration would be the integration of some notion of dependency structures
into the model. While the depccg parser presented in section 5.2.2 has shown that a dependency
factored approach can successfully treat attachment ambiguities inert to the CCG formalism itself,
it would be worth to investigate if it could also complement a CCG-enriched constituent parser in
those cases where CCG does not model discontinuous attachment ambiguities at all as in the case
of extraposed dependents explored in section 5.3.3.
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6. Integrating Supertags

In the following, two approaches for the integration of supertag information into discontinuous
constituent parsing are explored. The pipeline model uses a pre-trained supertagger to assign the
input sequences with lexical categories both at training and deployment. This assignment is then
used as an additional input feature for the parser. In the auxiliary approach, the neural model
is trained to predict both parsing actions and supertag assignments from a shared representation,
exploiting statistical correlations between the two tasks.

6.1. Pipeline Approach

In natural language processing, it is common to process several tasks that build on each other in a
sequential order. Using the outputs of one dedicated system as input for another model where the
models have parameters that are independent of each other is called a pipeline approach (Goldberg,
2022, chapter 20).

The implementation of the stack-free discontinuous transition-based parser from Coavoux and
Cohen (2019), presented in section 4, will serve as the basis for a supertagging pipeline approach.
I use the supertag output of the depccg model trained on the CCGrebank (Yoshikawa et al., 2017,
described in section 5.2.2) as an additional input to the parser. One option would be to supertag
the input sentences and use a trainable embedding for the one-best supertag for each token as
an input. Instead, I decided to use the probability distribution over the 511 lexical categories
that depccg outputs for each token as an input feature. This should give the parser more useful
information in cases where depccg is unsure of the correct assignment and assigns high probabilities
to more than one choice.

Such an approach is called cascading (Goldberg, 2022, chapter 20). Instead of feeding the
first model’s final output to the next task, an intermediate representation that is trained to be
informative for the lower-task prediction is used. Here, the last layer before the application of arg
max is passed forward.

A common strategy is to fine-tune an upstream model when training the main task by including
all or some of its parameters in the error gradient backpropagation (Jiang et al., 2020). I will not
pursue such a strategy here since this would effectively enlarge the parsing model and skew a direct
comparison with the baseline. Furthermore, re-optimizing the supertag predictor on the parsing
task would contradict the goal of identifying what effect supertag features have on the parser.

6.1.1 Supertag Representation

On an abstract level, the depccg supertagger is a function depccg that takes a sequence of to-
kens w0:n and outputs a sequence of probability distributions over 511 categories. These include
categorial features as in S[dcl] and NP[expl].

depccg(w0:n) = d1, ...,dn (6.1)

di ∈ R511

di contain log probabilities. Thus, to obtain probabilities in the unit interval, one has to apply
the exponential function to the entries. Prior to enriching the token representation, I pre-process
the distribution using a two-layer feed-forward network with dropout before the second layer.
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FFsup(a) = h′W2sup + b2sup

h′ = d⊙ h

d ∼ Bernoulli(dropsup)

h = tanh(aW1sup + b1sup)

(6.2)

a ∈ R511, W1sup ∈ R511×dsup ,W2sup ∈ Rdsup×dsup , b1sup,b2sup ∈ Rdsup

Then I enrich the token representation wi by concatenating the output of the feed-forward
network to the word embedding and the character-aware encoding:

wi = c(wi) ◦ e(wi) ◦ s(wi)

s(wi) = FFsup(exp(di))
(6.3)

di ∈ R511, s(wi) ∈ Rdsup , wi ∈ Rdtoken , dtoken = dchar + dword-emb + dsup

The 2-layer bi-LSTM transducer then operates over the enriched token representations con-
structing context-aware representations that encode character and word information as well as
information about the supertag structure in the sentence for each token. The architecture of the
model is visualised in figure 6.1.

BI2 BI2 BI2 BI2 BI2

BI1 BI1 BI1 BI1 BI1

POS POS POS POS POS

parsing parsing parsing parsing parsing

wLet

...

wus wenjoy

...

wthis

...

wexample

...

concate(us) dusF Fsup

Supertagger

Let us enjoy this example...

dLet denjoy dthis ...

Rf Rf Rb Rb

ce(u) ce(s) ce(s) ce(u)

Figure 6.1: Stack-free neural parser with supertagging pipeline approach. For clarity the token
representations and the supertag prediction vectors are subscripted with words instead of indices.
Figure inspired by Goldberg (2022, chapter 20.2).

6.1.2 Hyperparameters

The rest of the model resembles the implementation of Coavoux and Cohen (2019). Their choice
of hyperparameters given in table 4.1 remains unchanged. Approach-specific hyperparameters are
listed in table 6.1. The dimensionality of the supertag feed-forward network is set to the same
value as the size of the probability distribution it receives as input in order to rule out any loss of
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information that could impede model performance. In the comparison of results given in section
6.3 the model will be called Piperebank.

Architecture hyperparameters
Dimension of supertag input representation dsup 511
Number of layers for supertag FF network 2
Activation function for supertag FF network tanh

Optimisation hyperparameters
Dropout for supertag FF network dropsup 0.1

Table 6.1: Hyperparameters of the supertag pipeline model. The other architecture and optimisa-
tion parameters match those of the baseline listed in table 4.1.

6.2. Auxiliary Approach

A common technique related to fine-tuning in pipeline-systems is auxiliary or multi-task learning
which was first explored by Caruana (1997). Instead of using the predictions of a specialised system
as additional input for the main task model, the idea is to jointly train individual networks for both
tasks that share some part of their structures (Goldberg, 2022, chapter 20). Such an architecture
learns a shared core representation that is thought to leverage synergies between the tasks.

In deep neural network models, it is common practice to arrange easier tasks at lower levels,
stipulating a hierarchy between tasks. Instead of sharing the entire deep neural network, some
task-specific predictors are provided with vectors resulting from lower layers of the network. This
strategy is known as collective sharing or stack propagation (Goldberg, 2022, chapter 20) and was
first explored for natural language processing by Søgaard and Goldberg (2016).

Auxiliary tasks based on the main task dataset effectively allow to enlarge the available training
data without the need to acquire additional corpora. Often it is possible to break down the main
objective into lower-level auxiliary tasks (Zhu and Sarkar, 2019). Furthermore, when training
in parallel, multi-task learning can have a regulatory effect on large models that tend to overfit
(Goldberg, 2022, chapter 20). Introducing auxiliary objectives forces the shared substructures to
be more general which in turn helps with the treatment of data not seen during training.

The following sections present several architectures for the inclusion of CCG supertagging as
an auxiliary task in the discontinuous constituent transition-based parser of Coavoux and Cohen
(2019).

6.2.1 Simple Model

The original stack-free discontinuous parser of Coavoux and Cohen (2019) features two biLSTM
layers where POS tagging is supervised at the first layer and parsing actions are supervised at the
second layer. Thus, the first biLSTM network is shared by both POS tag prediction and parsing
while the second biLSTM network is only included in the computation of parsing transitions. I
propose integrating CCG supertagging as an auxiliary task by enlarging the LSTM stack through
the insertion of an intermediate layer. The output of this biLSTM module is then used as input
for a task-specific feed-forward network for CCG supertagging and as input for the top biLSTM
network that is exclusive to parsing action prediction.

This arrangement is motivated by two factors. Firstly, Søgaard and Goldberg (2016) show
that using POS-tagging as an auxiliary lower-level task for CCG supertag prediction in a three-
layer recurrent neural network setting yields improvements in supertagging accuracy suggesting
a natural hierarchy between the two tasks. Secondly, supervising CCG supertagging at a lower
level than parsing is in line with the traditional view on supertags as “almost parsing” (Bangalore
and Joshi, 1999). Furthermore, the findings of the manual analysis in section 5.3 suggested that
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a constituent parser would need to be able to contextualise supertag assignments to benefit from
them. This motivates maintaining a final biLSTM layer that is only included in parsing action
prediction and operates over the vectors that are also provided to the supertagging feed-forward
network.

The proposed architecture can be formalised as follows. Each layer l consists of a biLSTM
module receiving the last layer’s output as input.

ml,0:n = biLSTM∗
l (ml−1,0:n) (6.4)

For the first layer the token representations are used as input:

m1:0:n = biLSTM∗
1 (w0:n) (6.5)

In the baseline model, the output of the first LSTM layer is added to the output of the second
LSTM layer (residual connection). The combined output is directed to the feed-forward networks
for parsing action prediction. I opted to replicate the simple residual connection from the second
LSTM’s input to its output for the additional layer. The first LSTM does not feature a residual
connection since its input and output dimensionalities do not match.

ml,0:n = biLSTM∗
l (ml−1,0:n) + ml−1,0:n for l ∈ {2, 3} (6.6)

Now, the feed-forward network for POS-tagging FFP OS still receives m1 as input while the
parsing action scorers FFlabel and FFstruct are provided with the last layer m3. For supertagging,
a specialised feed-forward network with the same architecture as FFP OS is introduced that receives
m2 as input. Let B be the alphabet of supertags.

FFsup(x) = x′Wsup

x′ = d⊙ x

d ∼ Bernoulli(dropsup)

(6.7)

Wsup ∈ Rdimhid×|B|, dropsup ∈ [0, 1]

For an input sequence w0:n the probability of a sequence of supertags s0:n = s1, ..., sn is then
computed as follows:

P (s0:n|w0:n) =
n∏

i=1
Softmax(FFsup(m2,i))[idxB(si)] (6.8)

m2,i ∈ Rdhid , FFsup(m2,i) ∈ R|B|

In the train split of the CCGrebank, 1574 distinct lexical category assignments occur, thus
|B| = 1574. Only 511 supertags appear 10 or more times (Honnibal et al., 2010). The large
number of supertags and the small amount of training data for two thirds of the categories may
make it hard to achieve useful generalisations for rare phenomena.

An overview of the modified architecture of the model is given in figure 6.2.

Objective Function I perform supervised learning using the lexical category annotations pro-
vided by the CCGrebank. For training, sections 2-21 are used so that the auxiliary task does not
extend the domain of the main task DPTB dataset.

The neural network parameters are optimised during training. The objective function intro-
duced in section 4.5 now includes the supertagging loss.

L = Lt + Lp + Lsup

Lsup = −
n∑

i=1
log P (si|w0:n)

(6.9)
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Figure 6.2: Stack-free neural parser with a three-layer biLSTM network and supertagging as
an auxiliary task. For clarity the token representations and the supertag prediction vectors are
subscripted with words instead of indices. Figure inspired by Goldberg (2022, chapter 20.2).

In practice, instead of strictly alternating between the three tasks, a strategy called uniform
sampling (Sanh et al., 2019), I iterate through the randomly shuffled list of all available pairs of
task and annotated sentence. At each step, the network performs an optimisation for the chosen
pair. This is known as proportional sampling where the probability of a task is proportional to its
corpus size and was first proposed by Sanh et al. (2019). Each epoch iterates through the full list.
The pseudo-code for this training procedure is given in algorithm 6.1.

This modification to the model was necessary since aligning the CCGrebank with the DPTB
is not possible due to a few missing sentences in the CCGrebank (0.56%, i.e. 274 of the 49.208
sentences in the Penn Treebank). These sentences were already left out in the original CCGbank
since they could not be converted to CCG by the translation algorithm utilised by Hockenmaier
and Steedman (2007). They note that 107 of these cases include sentential gapping and 66 non-
sentential gapping while only a minor number of the remaining sentences was excluded because
of an erroneous treatment of long-range dependencies. According to Hockenmaier and Steedman
(2007) the translation algorithm incorrectly identified a complement as an adjunct. Despite their
small number and without investigating these exclusions any closer, it could of course be the
case that they would provide important information for the treatment of certain discontinuous
phenomena that already occur very infrequently in the corpus (cf. section 5.3). However, manually
reintegrating these sentences would be very labour-intensive.
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Algorithm 6.1 Proportional task sampling. Inspired by (Goldberg, 2022, chapter 5).
Input: a list of task-dataset pairs M , a number of training epochs n

1: D ← [ ]
2: for all ⟨task, dataset⟩ in M do
3: for all training example ⟨x, y⟩ in dataset do
4: D.append(⟨task, x, y⟩)
5: end for
6: end for
7: for all epoch = 1 to n do
8: for all training example ⟨task, x, y⟩ in D do
9: loss_node ← build_computation_graphtask(x, y)

10: loss_node.forward()
11: gradients ← loss_node.backward()
12: update_parameterstask(gradients)
13: end for
14: shuffle(D)
15: end for

6.2.2 Residual Connections

In deep multi-layer neural network models trained with gradient descent the effective backpropa-
gation of errors can be difficult to achieve. A central challenge stems from the problem of vanishing
gradients where the gradient being backpropagated through the network decays with each addi-
tional layer, hardly affecting early parameters of the system, or grows exponentially due to repeated
scaling (Bengio et al., 1994; Hochreiter et al., 2001; Glorot and Bengio, 2010). Thus, with increasing
depth, a model tends to be harder to train effectively.

Residual, skip or shortcut connections are used to mitigate this effect by allowing for the direct
flow of gradients from the final loss computation to lower parts of the system through the estab-
lishment of connections that leave out certain components or layers of the network. Motivated by
the ResNet model of He et al. (2016), this is typically. This strategy has the additional benefit of
enabling the model to easily learn the identity function which tends to be difficult for models with
non-linear activation functions (He et al., 2016).

Stacked recurrent neural networks are connected both horizontally, with the hidden units in
the same layer representing a time-step in the sequence, and vertically, as a feed-forward process
through the layers at the same time-step. The architecture of LSTMs is designed to prevent the
problem of vanishing gradients for repeated horizontal application by enforcing constant error
flow along the sequence using a special cell unit controlled by gates that perform element-wise
multiplication to forget information in the cell or add new (transformed) input (Hochreiter and
Schmidhuber, 1997; Sundermeyer et al., 2012) (cf. definition 4.18). However, when stacking several
LSTM models vertically, the problem reoccurs and leads to slow and difficult training (Wu et al.,
2016b).

Therefore, it is common practice to include residual connections in stacked LSTM models. They
were first proposed for stacked recurrent neural networks by Raiko et al. (2012) and explored for
LSTM stacks specifically by Wu et al. (2016b). As explained in section 4.5, Coavoux and Cohen
(2019) use a simple skip connection that adds the output vector of the first LSTM layer to the
output of the second layer element-wise. This allows information to bypass the second LSTM
network.

With larger vertical LSTM stacks, the question of where to add residual connections becomes
non-trivial. While simply using an additive residual skip connection for every LSTM layer or blocks
of LSTM layers appears to be the standard approach, several alternatives have been suggested,
one of which motivates a modification to the three-layer auxiliary approach at hand. Inspired by
the gate design of the LSTM, Wu et al. (2016a) propose integrating a multiplicative gate for the
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residual connection directly into the LSTM hidden unit. Their best scoring approach is to connect
the output of layer l − 2 to the cell output of layer l. This entails the following change to the
standard LSTM equation given in definition 4.18.

hl,t = ol,t ⊙ tanh(cl,t−1) + rl,t ⊙ hl−2,t (6.10)

hl−2,t,ol,t, cl,t−1, rl,t,hl−1,t ∈ Rdout

where t represents the time step in the sequence and rl,t is a gate computed alongside the other
gates in the LSTM:

rl,t = sigm(hl,t−1Wr,l + hl−1,tUr,l) (6.11)

rl,t ∈ Rdout , Wr,l ∈ Rdout×dout , Ur,l ∈ Rdin×dimout

When rl,t equals 1 at some position, the output of hl−,t at that position gets passed through
unobstructed. When it equals 0, the network behaves like a traditional stacked feed-forward
network (Wu et al., 2016a). This strategy has the benefit of allowing the network to choose the
scales with which the individual entries in the tensor should be directed forward to improve the
result depending on the sequential context encoded in the internal states. It should lend itself
well to a multitask approach that tries to build a general feature representation benefitting several
objectives. An LSTM layer can fully specialise on retrieving context-dependent information for a
certain task while being able to directly retrieve information already encoded by a lower level task
depending on input and context. Wu et al. (2016a) report that their proposal improves results for
CCG supertagging over a model simply adding the penultimate layer output to hl,t.

I would like to propose a complementary perspective on skip connections in the context of
hierarchical multi-task models. Direct additive connections from early layers to the final layer
allow for the unobstructed backpropagation of errors from the main task’s feed-forward network
to lower levels from which auxiliary tasks are supervised. In a fully connected architecture, with
shortcut connections in each layer, I assume that for layer l this significantly works towards the
construction of mutually beneficial representations with respect to tasks supervised on levels ≥ l.
This, however, presupposes closely related tasks which is a key condition for effective multi-task
learning as explained above. When auxiliary tasks are expected in some systematic way to be
synergistic in a certain number of classes but noisy and unhelpful for the main task in others,
using gates to enable the model to dampen or to increase the intensity of values in skip connections
dynamically and individually depending on context may allow the model to benefit from less closely
related auxiliary tasks, as in the case of CCG supertagging for discontinuous constituent parsing.
This might be a balanced compromise between an ungated residual LSTM stack based on element-
wise summation and a computationally expensive but more informative residual connection realised
through concatenation with free access to all preceding outputs.

Unfortunately, using a custom LSTM cell architecture in pytorch would mean a significant in-
crease in computational cost. The baseline model of Coavoux and Cohen (2019) uses the fast native
LSTM implementation written in the C++ programming language. To maintain this efficiency
and to better compare the effect of a gated residual connection to the baseline implementation of
Coavoux and Cohen (2019) that skips only a single LSTM layer at a time instead of two, I explore
simply using the current and the last layer output as inputs to the gate. The residual connection is
established from the output of the preceding layer and does not alter the hidden unit of the LSTM
but is connected thereafter. The exploration of Wu et al. (2016a)’s approach is left for future
work. I expect the LSTM hidden state of the current layer to be able to encode the contextual
information provided by the preceding time step hidden state hl,t−1 used in Wu et al. (2016a). My
approach can also be seen as a variation of the concept of highway connections (Srivastava et al.,
2015).
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Definition 6.1 (Gated Residual).
A gated residual module can be defined as a function that takes two vectors x,y ∈ Rdim and has
learnable parameters b ∈ Rdim, W ∈ R2dim×dim for some dimensionality dim:

Res(x,y) := x + r⊙ y

r = sigm((x ◦ y)W + b)

A visualisation of the gated residual module is given in figure 6.3.

σ

+
·

Output

Input

Residual
W

Figure 6.3: Design of the gated residual connection.

For each LSTM layer, the output and the previous layer output are combined via a layer-specific
gate. The result of this computation is then forwarded to the specific task feed-forward network(s)
supervised at this level and to the next LSTM recurrent layer as well as the following gated residual
module.

ml,t = Resl(biLSTM∗
l (ml−1,0:n)[t],ml−1,t) (6.12)

Furthermore, I suggest adding a shortcut connection from the LSTM stack input, i.e. from
the token representations, by performing an initial linear transformation that converts this tensor
into the LSTM hidden layer dimensionality dhid. This way, the first LSTM layer can also carry a
residual module. The full modified architecture is visualised in figure 6.4.

6.2.3 Increasing Model Width

To allow for a fair comparison with the original model of Coavoux and Cohen (2019), the simple
CCG approach maintains the LSTM hidden state dimension of 400. However, against the backdrop
of the manual analysis in section 5.3 which suggested that CCG lexical category assignments
might statistically correlate with DPTB descriptions for some phenomena while being unhelpful
for resolving others, one can expect a multi-task model optimised for both tasks to require a
higher dimensionality to establish a representation that can encode the additional information in
uncorrelated cases.

At the same time, Goldberg (2022, chapter 20.2.6) points out that if an auxiliary model with
k tasks only started to show improvements if the dimensionality was simply enlarged k-fold, the
network likely did not established shared knowledge for several tasks and the improvement was only
built on increased neural capacity. Therefore, in order to identify if the model demands increased
capacity to support the additional task in a shared representation, I also perform training with the
LSTM hidden dimension dhid enlarged by factor 1.5 to 600.
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Figure 6.4: Stack-free neural parser with a three-layer biLSTM network, supertagging as an auxil-
iary task and gated residual connections to cell outputs. For clarity the token representations and
the supertag prediction vectors are subscripted with words instead of indices. Figure inspired by
Goldberg (2022, chapter 20.2).

6.2.4 Feature Bootstrapping

Zhu and Sarkar (2019) perform multi-task learning for lexicalised tree adjoining grammar (LTAG)
supertagging by deconstructing complex TAG categories into classes of substructures like root,
which naturally refers to the label of the root node of the lexical tree, or sketch, which captures only
the structure of the lexical category without labels. Six objectives, including supertag prediction,
are trained using separate biLSTM models. After training, the supertagger is used to generate
a certain number of best supertags. The auxiliary models then compute the probability of these
assignments’ substructures from which the best supertag among the predictions is determined.
Zhu and Sarkar (2019) report consistent improvements in a range of settings compared to a single-
task network for supertagging. By reusing the training set for the supertagging task the authors
effectively generate more data instances without enlarging the dataset.

S

NP↓ VP

V⋄ NP↓

X

X X

X X

sketch: root: S

Figure 6.5: Example for root and sketch subtasks for an LTAG lexical tree as proposed by Zhu
and Sarkar (2019).
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Figure 6.5 shows an example for the decomposition of lexical trees in LTAG as proposed by
Zhu and Sarkar (2019). In the following, I borrow from this idea and present the extraction of
subtasks for CCG supertags.

Argument For each supertag the rightmost/outermost argument as well as its directionality
symbolised by “-” for left and “+” for right are concatenated. For categories without arguments,
“+” is used as a dedicated label. (6.1) gives an example of this schema. 148 distinct arguments
are found in the training split.

(6.1) a. I
NP
+

like
(S[dcl]\NP)/NP
+NP

this
NP/N
+N

train
N
+

b. You
NP
+

sing
S[dcl]\NP
-NP

beautifully
(S\NP)\(S\NP)
-(S\NP)

Head The head subtask predicts the innermost return type of a CCG category. It is also known
as the range of a category (Steedman, 2000, chapter 3). There are 26 distinct head tags.

(6.2) a. NP
NP

(S[dcl]\NP)/NP
S[dcl]

NP/N
NP

N
N

b. NP
NP

S[dcl]\NP
S[dcl]

(S\NP)\(S\NP)
S

Sketch The sketch ignores atomic categories in function category descriptions and only represents
the overall argument structure of the supertag. It is inspired by the sketch task of Zhu and Sarkar
(2019) who found that it helps with disambiguation for TAG. To extract the sketch feature from
a CCG supertag, all atomic categories are replaced by an X. The number of distinct sketch labels
is 212.

(6.3) a. NP
X

(S[dcl]\NP)/NP
(X\X)/X

NP/N
X/X

N
X

b. NP
X

S[dcl]\NP
X\X

(S\NP)\(S\NP)
(X\X)\(X\X)

Given the hierarchical framework of the approach at hand, subtasks will be supervised at a
dedicated additional layer between POS-tagging and supertagging. The three subtasks are su-
pervised from the same layer since there is no obvious hierarchy regarding their difficulty and
inter-relationship. An illustration of the full modified architecture is given in figure 6.6.

Each of the three subtasks has a dedicated feed-forward network that outputs a distribution
over the distinct labels found in the training dataset. It is optimised in parallel according to
algorithm 6.1. The inclusion of these three tasks leads to twice the amount of training instances
per epoch compared with the simple auxiliary model (237,940 sentences in total). In case the
approach shows to be successful, the extraction of other subtasks like functor or full argument
structure could be performed.
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Figure 6.6: Stack-free neural parser with a multi-task four-layer biLSTM network, including gated
residual connections. Supertag-component tagging (sketch, head, arg) and supertagging (CCG)
are added as auxiliary tasks, with supertagging being supervised one layer higher than the subcom-
ponents. For clarity the token representations and the supertag prediction vectors are subscripted
with words instead of indices. Figure inspired by Goldberg (2022, chapter 20.2)
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6.2.5 Head-Dependency Structure

The CCGbank and its derivative, the CCGrebank, provide head-dependency structures that encode
the saturation of category arguments. The dependencies hold between a lexical functor and the
heads of the constituents that fill the functor’s argument slots (Hockenmaier and Steedman, 2007).

Figure 6.7 shows an example CCG derivation from the CCGrebank as well as its head-dependency
structure depicted using directed labelled edges. The edge labels refer to the respective argument
slot that is filled in the category the edge originates in. For transparency, I added subscripts to the
supertag assignments that make explicit the argument number. As can be seen in the case of does,
a word can have two incoming edges. This stems from the fact that adjuncts are not treated as
arguments of their governor, but instead take it as their argument, as prescribed by combinatory
categorial grammar.

So what does George Bush really believe ?
S/S1 S[wq]/(S[q]/NP)1 (S[q]/(S[b]\NP)1)/NP2 N/N1 N S\S1 (S[b]\NP1)/NP2 .

>

N
<uuu>

NP
>

S[q]/(S[b]\NP)
<BBB×

(S[q]/(S[b]\NP))
>BBB

S[q]/NP
>

S[wq]
<rrr>

S[wq]
>

S[wq]

1
1

1
2

1

1

Figure 6.7: Derivation from the CCGrebank alongside its head-dependency structure visualised as
labelled directed edges above the tokens.

The head-argument information used here closely correlates with the CCGrebank gold deriva-
tion and is less akin to conventional dependency descriptions. This can be seen in figure 6.7 where
what is not encoded as an argument of believe but as taking a constituent with does as the lex-
ical head as an argument. Therefore, while this information might be useful to solve projective
attachment ambiguities (cf. figure 5.6) its effect on difficult discontinuous cases that arise from
extraposed dependents where the CCGrebank unhelpfully analyses constituents as adjuncts of
higher-level clauses (cf. figure 5.23) remains to be seen.

To test the usefulness of head-dependency structure prediction as an additional auxiliary task,
I encode this information into two distinct sequence labelling tasks encompassing left dependen-
cies and right dependencies respectively. For each position i, the relative position of the words
right of i connected with an outgoing edge as well as the corresponding argument number is
predicted (right action). The same is done for left dependents (left action). (6.4) shows the
tags resulting from the annotation in figure 6.7 where each outgoing edge takes the form <ar-
gument_number>:<relative_position>. 0 represents the absence of outgoing edges. In cases of
multiple arguments they are separated by an underscore symbol. To keep the number of distinct
categories manageable, relative distances above absolute value 5 are all set to 5 or -5 respectively.
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(6.4)
right:
left:

So
1:1
0

what
1:1
0

does
2:2_1:4
0

George
1:1
0

Bush
0
0

really
0
1:-3

believe
0
0

?
0
0

In the train split, 351 distinct left action labels and 955 right action labels are predicted. This
corresponds with the right-branching tendency of the English language (Kiparsky, 1996). The
two sequence tagging tasks are treated as higher-level tasks compared to CCG supertagging since
they encode relationships between different supertag assignments in the sentence, and therefore,
in a four-biLSTM-layer network the tasks are supervised in the following order: POS-tags, CCG
supertags, action labels, parsing (from bottom to top).

6.2.6 Other Auxiliary Tasks

In addition to auxiliary tasks based on the CCGrebank, I perform a number of experiments to
assess the suitability of other syntactically motivated sequence labelling tasks for discontinuous
constituent parsing. Due to space limitations, the representations and formalisms which the auxil-
iary tasks are derived from will not be introduced in detail and an interested reader will be referred
to more comprehensive introductions and formal accounts.

LCFRS Ruprecht and Mörbitz (2021); Ivliev (2020) present an algorithm for the extraction of
supertags in the LCFRS formalism from discontinuous constituent treebanks. For LCFRSs have
shown to be able to adequately capture the syntactic descriptions in the DPTB (Evang, 2011),
LCFRS supertagging immediately suggests itself as an auxiliary task for neural parsing. Using the
prepare_data script of the LCFRS Supertag Parser released by Ruprecht and Mörbitz (2021)46,
I converted the DPTB into a format annotated with LCFRS supertags. The model is trained to
predict these from an intermediate layer between POS tagging and parsing in the same fashion as
suggested for CCG supertags in section 6.2.1.

Unfortunately, the extraction process results in a large number of distinct supertags. In total
4504 lexical categories are assigned in sections 2–21. Since this number is three times larger than
the 1574 distinct CCG categories found in the CCGrebank train split, LCFRS-supertag prediction
is likely to be more difficult to learn for the neural model. This is an important thing to keep
in mind when comparing the results of different auxiliary tasks to draw conclusions about their
informativeness for discontinuous constituent parsing.

Chunking Chunking separates a sentence into simple constituent types like NP or VP and is
sometimes called shallow parsing (Collobert and Weston, 2008) or partial parsing (Jurafsky and
Martin, 2009, chapter 13.5). Each word is only assigned to a single constituent. Using the so-called
IBO notation (Jurafsky and Martin, 2009, chapter 13.5), chunking can be treated as sequence
labelling by introducing special symbols where the beginning word of a constituent is marked with
B and internal parts of a chunk are marked with I. Furthermore, if elements are outside of any
chunk they are simply marked with O. Constituent type assignment and I, B and O features are
treated as a single task, which doubles the total number of tags. (6.5) shows an example sentence
chunked with brackets as well as the equivalent IBO-encoding taken from Jurafsky and Martin
(2009, chapter 13.5).

(6.5) [NP The
B-NP

morning
I-NP

flight
I-NP

] [PP from
B-PP

] [NP Denver
B-NP

] [VP has
B-VP

arrived
I-VP

]

46https://github.com/truprecht/lcfrs-supertagger

https://github.com/truprecht/lcfrs-supertagger
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In order to integrate chunking as an auxiliary task, I use the dataset made available as part
of the CoNLL-2000 shared chunking task (Tjong Kim Sang and Buchholz, 2000). It is based on
sections 15–18 (train split, 8936 sentences) and section 20 (test split, 2012 sentences) of the Penn
Treebank. Therefore, the inclusion of this task does not enlarge the domain beyond the sentences
used to train the main parsing task (PTB sections 2–21). Since no development split is defined,
I use the last 399 sentences of the train split for development and remove them from the training
set.

The model is trained to predict the chunking labels from an intermediate biLSTM layer between
POS tagging and parsing in the same fashion as suggested for CCG supertagging in section 6.2.1.
There are 22 distinct labels in the test split. Since task sampling is proportional to the dataset
size, chunking only accounts for 9.7% of total training instances.47 For all other models explored
in this work, the individual task datasets are roughly equal in size.

Dependency Parsing Dependency grammars are a class of grammatical theories centred around
the notion of dependency as opposed to constituency. While constituent phrase structure grammars
arrange words into hierarchical constituents, dependency grammars exhibit word-to-word syntactic
relations expressed through labelled directed edges (Jurafsky and Martin, 2009, chapter 12.7).

A dependency descriptions can be formalised as a tree with labelled edges over the tokens in
a sentence. Each token has one incoming edge and zero or more outgoing edges. A single token
is connected via an incoming edge with a special root symbol. For each token, the source of its
incoming edge is called its head. This notion closely correlates with the concept of a constituent
head discussed in section 3.2.6 (Jurafsky and Martin, 2009, chapter 12.7.1).

Several suggestions for the joint learning of constituent and dependency parsing have been
made. Strzyz et al. (2019a) perform sequence labelling-based projective constituent and depen-
dency parsing in a multi-task framework that yields improvements over comparable single-task
models for both tasks. Zhou et al. (2020a) explore dependency parsing and span-based constituent
parsing together with semantic parsing. To the best of my knowledge, no exploration of synergistic
parsing of dependency relations and discontinuous constituents has been performed to this date.

Strzyz et al. (2019b) compare several approaches for the conversion of dependency parsing into
a sequence labelling task. Among these approaches, so-called relative POS-based encoding, which
was first used by Spoustová and Spousta (2010), leads to the best parsing score for single task
dependency parsing. A dependency tree for a sentence w1, ..., wn is linearised by assigning each
token wi the label of its incoming edge li, the POS tag tj of its head wj and an integer oi such
that if i < j, wj is the oith closest of the words to the right of wi that bear POS tag tj and if
j < i, wj is the −oith closest of the words to the left of wi that have POS tag tj . This results in
a triple (tj , oi, li) that is treated as a distinct tag. As Strzyz et al. (2019b) note, such a scheme
is closer to the notion of valency, i.e. argument structure, when compared to strictly encoding
relative position.

Figure 6.8 shows an example dependency description together with the corresponding relative
POS-based encoding. For instance, the label VB_1_aux of the token does encodes an edge with
label aux that connects the first token to the right of does that has POS tag VB with does. In case
of a root relation, the distinct label root_-1_root is used as a standard.

I convert the dependency PTB (de Marneffe et al., 2006) into a dataset tagged with relative
POS-based labels. The PTB POS tags are taken as the base. Subtypes for syntactic relations
like :poss in nmod:poss are removed to reduce the number of distinct labels. Furthermore, as
suggested by Spoustová and Spousta (2010), the maximum relative position is capped at -3 and 3.
The conversion results in 1634 distinct labels for the train split of sections 2–22 of the PTB.

47Parsing and POS tagging amount to 39,832 instances each.
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So what does George Bush really believe ?
RB WP VBZ NNP NNP RB VB .

VB_1_advmod VB_1_dobj VB_1_aux NNP_1_compound VB_1_nsubj VB_1_advmod root_-1_root VB_-1_punct

root

advmod

obj

aux

compound

nsubj

advmod punct

Figure 6.8: Dependency description using directed arcs from the dependency PTB as well as the
corresponding relative POS-based encoding underneath.

In the experiment, dependency parsing is treated as a parallel task to constituent parsing and
also supervised from the final layer. In order to be able to compare the model with the other
auxiliary task experiments, the network maintains a 3-layer biLSTM stack. This amounts to a
similar architecture as in Strzyz et al. (2019a) with the notable difference that they deconstruct
the parsing tasks into 3 constituent labelling tasks and 2 dependency labelling tasks whereas I
employ only one task per paradigm. Furthermore, the transition-based approach used here allows
for discontinuous constituents while the sequence labelling encoding of constituent trees used by
Strzyz et al. (2019a) does not.

LTAG Tree adjoining grammar (TAG) is a mildly context-sensitive formalism that was first
introduced by Joshi et al. (1975). A lexicalised variant of TAG was proposed by Schabes and Joshi
(1991) which led to the formalisation of lexicalised tree adjoining grammar (LTAG). An illustrative
example of an LTAG elementary tree has been given in figure 6.5. Much of the work on supertags
like the extraction of supertagged corpora from treebanks and the development of parsers that use
supertaggers was initially conducted on LTAG. Bangalore and Joshi (2010b) give a comprehensive
overview of important research in this regard.

The TAG extracted PTB of Chen et al. (2006) is commonly used as a basis for training LTAG
supertaggers (Zhu and Sarkar, 2019; Kasai et al., 2018). Unfortunately, I was not able to acquire
this corpus. Instead, I used the publicly available48 LTAG-spinal treebank developed by Shen et al.
(2007). LTAG-spinal omits subcategorisation information and the argument-adjunct distinction.
This reduces the overall number of distinct supertags and the average number of elementary trees
associated with a lexical item.

I train a discontinuous constituent parser with LTAG-spinal supertag prediction as an interme-
diate auxiliary task using the same 3-layer architecture as in the CCG model. The LTAG-spinal
treebank is based on the PTB and split into the same training, development and testing datasets.
1202 distinct tag symbols occur in the training set.

6.2.7 Hyperparameters

The hyperparameters for the multi-task models introduced in the preceding section are given in
tables 6.2 and 6.3. All remaining parameters are equal to those in the baseline as listed in table
4.1. The task specific feed-forward networks have the same architecture and are assigned the same
input dropout as the POS tag feed-forward network.

48Available at: https://www.cis.upenn.edu/~xtag/spinal

https://www.cis.upenn.edu/~xtag/spinal
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Architecture hyperparameters CCG CCGgate CCGgate
600 LCFRSgate Chunkgate Depgate LTAGgate

Dimension of sentence biLSTM dhid 400 400 600 400 400 400 400
Number of biLSTM layers 3 3 3 3 3 3 3
Number of auxiliary tasks labels 1574 1574 1574 4504 22 1634 1202
Type of residual connection add gate gate gate gate gate gate

Table 6.2: Hyperparameters of the supertag models with one auxiliary task. The other architecture
and optimisation parameters match those of the baseline listed in table 4.1.

Architecture hyperparameters CCGgate
multi CCGgate

dep

Dimension of sentence biLSTM dhid 400 400
Number of biLSTM layers 4 4
Number of auxiliary tasks 4 3
Number of auxiliary task labels 148, 26, 212; 1574 1574; 351, 955
Type of residual connection gate gate

Table 6.3: Hyperparameters of the supertag models with more than one auxiliary task. The task
label numbers are listed according to supervision depth from bottom to top. A semicolon indicates
the next layer. The other architecture and optimisation parameters match those of the baseline
listed in table 4.1.

Due to the promising results of the gated residual model CCGgate on the development dataset
compared to the ungated residual model CCG (cf. section 6.3), the other experiments adhere to
the gated residual approach.

Since all auxiliary models enlarge the baseline approach in some way, it is important to isolate
the contribution of this change in architecture on the model performance. Therefore, for every com-
bination of biLSTM stack depth, biLSTM hidden dimensionality and type of residual connection
used in the experiments, I also train a control model that does not include auxiliary tasks at the
intermediate biLSTMs. These are called Ctr3, CCGgate

2 , Ctrgate
3 , Ctrgate

3,600 and Ctrgate
4 where

the subscript indicates the number of biLSTM stacks. The auxiliary models will be compared with
the respective control model to reliably assess the effect of training with auxiliary tasks.

6.3. Experiments

I carried out experiments that investigate the effect of integrating supertags into discontinuous
constituent parsing by training the systems proposed in the preceding sections. In section 6.3.1,
I present the experimental protocol, then I discuss the results of the experiments in section 6.3.2.
Section 6.3.3 gives a per-phenomenon analysis of the pipeline model and the best scoring auxiliary-
task model on discontinuous structures and section 6.3.4 evaluates these models against several
error types. Section 6.3.5 investigates noticeable effects of supertag integration in more detail via
a sample comparison of gold and predicted trees. Finally, I give a comparison with previously
published discontinuous constituent parsing results in section 6.3.6.

All approaches are implemented as modifications of the discontinuous stack-free transition-
based parser created by Coavoux and Cohen (2019) which I have presented in section 4. The
code including all trained models and results will be made available at https://github.com/

filemon11/discoparset-supertag.
The modified codebase includes a dynamic multi-task framework. Via a hyperparameter one

can choose the number of layers for the biLSTM stack and what tasks should be shared up to
which layer. Combining several tasks based on different corpora is possible without manual code
changes. This allows for a straightforward exploration of a multitude of architectures. Furthermore,
I included the optional evaluation of auxiliary task accuracy on the respective development and
test corpora in the main evaluation function. This way, a multi-task-model’s capabilities on an

https://github.com/filemon11/discoparset-supertag
https://github.com/filemon11/discoparset-supertag
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auxiliary task can be easily compared with previously reported scores of other sequence labelling
systems.

6.3.1 Experimental Protocol

In order to use the dynamic oracle model of Coavoux and Cohen (2019) as a baseline and to allow
a reliable comparison with their results the protocol remains unchanged. The models here also use
the dynamic oracle and are trained with the ASGD algorithm (Polyak and Juditsky, 1992) for 100
epochs. Every 4 epochs the model is evaluated on the development set and selected if it surpasses
the previous best scoring instance in parsing F-score.

Training took approximately two days for the Piperebank model and three days for the simple
auxiliary CCG model using an NVIDIA GeForce RTX 2060 SUPER 8GB GPU. For the model
with the highest number of parameters, CCGgate

multi, training took roughly a week. Evaluation is
performed using the standard evaluator discodop (van Cranenburgh et al., 2016) and follows the
standard procedure of ignoring punctuation and root symbols. discodop retrieves the number of
matching brackets in the parsing prediction compared to the gold annotation using precision, recall
and F-score which has been agreed upon as the common metric for constituency parser evaluation
(Black et al., 1991).

6.3.2 General Effects of Supertag Integration

Table 6.4 shows the results of the experiments on the development set of the DPTB corpus (section
22) as well as the baseline score as reported by Coavoux and Cohen (2019) and a rerun with the
baseline model architecture and parameters using the modified codebase. The evaluation includes
precision, recall and F-score as well as precision, recall and F-score on discontinuous constituents
only. Furthermore, accuracy is reported for all auxiliary tasks. All models achieve convergence
within the 100 training epochs.

Baseline The differences between Coavoux and Cohen (2019) and the rerun with the modified
codebase can be attributed to the proportional task sampling used here that does not strictly
alternate between tasks but chooses them at random (cf. section 6.2) and to other non-deterministic
factors when training the network (e.g. dropout). Since the experiments here are all performed
using the modified code, the rerun is taken as a baseline in the comparisons that follow.

Pipeline The Piperebank model is unable to make improvements over the baseline parser. Slight
decreases in general precision (-0.35 in absolute score) and discontinuous precision (-5.01) result
in degradations of F-score. Providing supertag distributions generated by the pre-trained rebank
depccg model to the parser seems to decrease the model’s syntactic capabilities questioning the
helpfulness of CCG supertags for resolving discontinuous constituency. Interestingly, recall slightly
increases in the general (+0.08) and in the discontinuous case (+1.79).

A possible cause for the poor results of the Piperebank model might be the quality of supertag
distributions generated by the upstream supertagger. False lexical category assignments used as
input to the parser could lead the transition system astray, especially in cases of only sparsely
attested phenomena where the amount of training data cannot teach the parser successfully to
counteract wrong information at input level. I test this hypothesis by evaluating the depccg

rebank model on the CCGrebank development split which yields an accuracy of 81.61 when taking
the 1-best supertag — much lower than the CCG auxiliary model’s supertagging score, which
amounts to 92.64. For 89% of tokens the best supertag is amongst the 3 highest scoring tags.

depccg rebank was trained on the 511 most frequent supertags in the CCGrebank training
dataset. 1% of the tokens in the development split are not covered by this set. Strikingly, for those
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Model P R F DP DR DF POS SUP HEA ARG SKE LEF RIG

original 91.5 91.3 91.4 76.1 66.4 70.9 97.2 – – – – – –

baseline 91.45 91.15 91.30 79.95 65.25 71.85 97.25 – – – – – –

Piperebank 91.1 91.23 91.16 74.94 67.04 70.77 97.25 – – – – – –

Pipebank 91.52 91.55 91.54 75.65 65.47 70.19 97.30 – – – – – –

CCG 91.32 91.31 91.32 78.92 62.11 69.51 97.24 92.64 – – – – –

Ctr3 91.34 91.14 91.24 72.25 61.88 66.67 97.18 – – – – – –

Ctrgate
2 91.67 91.2 91.43 81.23 65.02 72.23 97.31 – – – – – –

CCGgate 91.86 91.67 91.77 82.48 68.61 74.91 97.22 92.85 – – – – –

Ctrgate
3 91.82 91.56 91.69 78.2 69.96 73.85 97.23 – – – – – –

CCGgate
600 91.85 91.57 91.71 78.36 66.59 72.0 97.21 92.66 – – – – –

Ctrgate
3,600 91.99 91.76 91.88 80.63 69.06 74.4 97.26 – – – – – –

CCGgate
multi 91.61 91.4 91.51 79.63 68.39 73.58 97.18 92.49 95.31 95.51 93.05 – –

CCGgate
dep 91.57 91.24 91.4 83.33 65.02 73.05 97.20 92.67 – – – 95.64 92.76

Ctrgate
4 91.82 91.71 91.77 79.53 67.94 73.28 97.16 – – – – – –

Table 6.4: Results of the experiments on the DPTB development set. P, R and F are precision,
recall and F-score. DP, DR and DF represent discontinuous precision, recall and F-score. POS and
SUP are POS-tagging and supertagging accuracy respectively. HEA, ARG and SKE refer to the
supertag subcomponents head, argument and sketch while LEF and RIG are left and right action
labels. The best score for each metric across all models is set in bold if the metric is reported for
more than one model. original refers to the dynamic oracle results of Coavoux and Cohen (2019)
while baseline refers to the rerun using a modified codebase and proportional task sampling.

tags that can be predicted, the gold tag has an average rank of 19.3 in the distributions which the
model outputs. Thus, there are some strong outliers with very low score in the prediction. A more
detailed analysis showed that in 67.7% of the cases where the gold supertag is not amongst the
best scoring 20 labels, the supertag is “,” while the 1-best prediction is “conj”. Perhaps there was
a mix-up of datasets when the depccg rebank model was trained.

In order to check whether this problem is specific to this supertagger variant or if the pipeline
approach is simply unsuitable, I decided to train an additional model (Pipebank) with the standard
depccg trained on the original CCGbank as the supertagger. This model performs better for
standard F-score (+0.24 compared to the baseline) but unfortunately even lower for discontinuities
(-1.66). Using this model, for 98.4% of tokens in the DPTB development split the gold supertag is
among the 3-best predictions which is why I conclude that there is indeed some kind of inconsistency
in the rebank supertagger. For this reason further comparisons of the experiments in regards
to discontinuous constituent analysis in sections 6.3.3 and 6.3.4 will be based on the results of
Pipebank. Unfortunately, when comparing Pipebank and the CCG auxiliary approach differences in
results might be caused by changes in the analysis of some phenomena that CCGrebank introduced
(Honnibal et al., 2010) and not only by the style of implementation (pipeline or auxiliary task)
which I tried to evaluate. Furthermore, the results of the manual analysis of correlations between
the DPTB and CCGrebank in section 5.3 may not always be applicable to Pipebank.

Simple Auxiliary It can be seen that the simple 3-layer control model with summative residual
connections Ctr3 produces worse results than the baseline (-0.06 F, -5.18 DF) despite the fact that
enlarging the LSTM stack depth gives the model more computational capacity. The simple CCG
model is able to improve these results with slight increases in F-score (+0.08) and discontinuous
F-score (+2.84) compared to the control model. However, it only leads to a marginal improvement
in F-score and even a decrease in discontinuous F-score compared to the baseline. Both results
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suggest that the architecture is suboptimal for harnessing the increase in computational capacity
provided by the additional LSTM transducer.

Gated Residual Connection Using gated residual connections in the 3-layer control model
Ctrgate

3 leads to solid improvements in all metrics compared to the baseline (+0.39 F, +2.0 DF),
with the notable exception of discontinuous precision (-1.75). The increase in discontinuous F-
score therefore stems from better recall which is why I assume that the gate-controlled residual
connections make it easier for the model to recognise long-range dependencies by having more
control over the composition of the relevant contextual features across the vertical pass through
the network. Improvements are not limited to networks with 3 biLSTM layers. They also show
when training the 2-layer baseline-model in a gated residual setting (Ctrgate

2 ; +0.13 F, +0.38 DF).
The inclusion of supertags as an auxiliary task at the intermediate LSTM (CCGgate) results

in solid improvements both for general F-score and for discontinuous F-score which confirms the
compatibility of gated residual connections with a hierarchical multi-task approach. Figure 6.9
depicts the progression of F-score over the epochs for the simple CCG model and for CCGgate.
The results for both the development split and a random selection of 425 sentences from the train
split are included. It shows that the gain in F-score for the gated model is not simply a result of
increased regularisation since both training and development results improve.
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Figure 6.9: Progression of F-score for CCG and CCGgate on the development split and a random
subset of the training split.

F-score for CCGgate increases by 0.08 absolute points and discontinuous F-score by 1.06 against
the control model Ctrgate

3 as well by 0.47 for F-score and 3.06 for discontinuous F-score compared
to the baseline. The former isolates the contribution resulting from CCG supertagging as an
auxiliary task. CCGgate strongly corrects discontinuous precision from 78.2 for the control model
to 82.48. This suggests that the network is able to acquire increased syntactic knowledge and
competence for the analysis of long-range dependencies.

This finding confirms that CCG supertags can be helpful in discontinuous constituent parsing
despite the seemingly incompatible nature of DPTB trees and CCG categories. The multi-layer
neural auxiliary-task model is able to generate beneficial representations based on complex corre-
lations which the pipeline model is apparently unable to acquire from the supertag distributions
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it is provided with at input level.
The increase in discontinuous precision comes with the cost of a slight decrease in discontinuous

recall compared to the control model (-1.35). A large gap between precision (higher) and recall
(lower) for discontinuities is often observed in discontinuous constituent parsers (Coavoux, 2021).
The baseline model is no exception to this rule (79.95 precision, 65.25 recall). The fact that the
pipeline approach does not add to this issue is coherent with the observations of Coavoux (2021)
who enrich the input features of their parser with BERT-contextual embeddings (Devlin et al.,
2019) which close the gap between recall and precision.

Learning a joint representation for both CCG supertagging and parsing apparently makes it
harder for the parser to recognise long-range dependencies. One possible cause is that conditioning
an intermediate vector representation both on supertagging and parsing as opposed to a pipeline
approach impedes differentiating between informative supertag assignments and incompatible cases
where a supertag corresponds to both projective and unprojective structures. This can be expected
since the shared architecture up to the second biLSTM output is trained to provide useful features
for CCG supertag prediction independent of supertag or context. As mentioned above, I suggest
that this effect is mitigated through the adaptivity of the gated residual connection.

A second possibility may lie in the sparseness of training data for certain types of discontinuities
(including their distinct CCG categories) coupled with the fact that auxiliary task training is per-
formed on the same dataset. Therefore, the model might overfit for triggers of certain phenomena.
This results in worse ability to recognise discontinuities not seen during training but when they
are recognised, the syntactic capabilities induced by CCG supertag prediction allow the parser to
competently reconstruct them. Enriching the input features using a pipeline approach naturally
does not lead to this phenomenon since the number of training instances remains the same.

Increasing Width Contrary to the expectations, enlarging the LSTM hidden dimensionality
from 400 to 600 for CCGgate

600 does not increase F-score (-0.06) or discontinuous F-score (-2.91)
compared to CCGgate. It also does not result in increased supertagging accuracy (-0.19). This
indicates that the model started to overfit.

When comparing with the very well performing single-task control model Ctrgate
3,600 one could

assume that the decrease in F-score (-0.17) and discontinuous F-score (-2.4) is caused by the inte-
gration of supertagging and be tempted to write off the auxiliary approach as ineffective. However,
given the fact that CCG supertagging showed to increase F-score in the other settings (CCG and
CCGgate) I argue that this observation should be taken as another indicator for overfitting. This is
supported by figure 6.10 which shows that the F-score on training instances significantly increases
while the development score is slightly lower than Ctrgate

3,600 from epoch 20 onwards. Apparently
the model adapts too closely to the training data due to a combination of increased network width
and the fact that the number of training instances on the same dataset is enlarged by factor 1.5.

As usual in cases of overfitting, one could either enlarge the training dataset, which is not an
option here, or experiment with forms of regularisation like increased dropout (Goldberg, 2022,
chapter 4.6) or the introduction of variational dropout for recurrent neural networks (Gal and
Ghahramani, 2016). An exploration of beneficial dropout application is left for future work.

Feature Bootstrapping The CCGgate
multi multi-task model with four biLSTM-layers and sub-

component supertag features performs worse than the three-layer model CCGgate without boot-
strapped sequence labelling tasks. General F-score is lower by 0.26 absolute points and discon-
tinuous F-score by 1.33 points. When comparing with the 4-layer control model Ctrgate

4 one can
assess that while the approach leads to a degradation of default precision, recall and F-score, these
metrics on only discontinuous constituents actually slightly increase. This is especially surprising
for discontinuous recall (+0.45), which distinguishes this approach and the simple CCG model as
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Figure 6.10: Progression of F-score for CCGgate
600 and Ctrgate

3,600 on the development split and a
random subset of the training split.

the only two multi-task models that do not lead to a decline in discontinuous recall relative to
their control model. Deconstructing supertags into distinct sequence labelling tasks may be a way
to counteract the previously observed tendency of neural multi-task approaches to worsen in the
model’s ability to recognise discontinuities. Given the fact that CCGgate

multi still underperforms com-
pared to the single-auxiliary task model CCGgate, further research regarding viable subcomponent
tasks and suitable architectures is necessary.

Head-Dependency As can be seen in table 6.4, using head-dependency information provided by
the CCGrebank in a four-layer multi-task approach alongside CCG supertagging does not lead to
improvements. The strongest drop in score occurs for discontinuous constituents, especially recall:
-3.59 compared to CCGgate. This observation cannot be explained by the choice of architecture
since the control model Ctrgate

4 outperforms CCGgate
dep in most metrics.

Therefore, one can assess that head-dependency relations do not provide useful information for
constituent parsing. My assumption is that the inclusion of this auxiliary task induces a represen-
tation for relationships between tokens that is close to the gold combinatory categorial grammar
derivations found in the CCGrebank but incompatible with the DPTB constituent analysis. For
instance, in figure 6.7 the wh-word what would receive the same right action label 1:1 as George,
which indicates that its right argument is filled by a constituent that has its lexical head one po-
sition to the right in the sentence. In the case of George, this corresponds to the DPTB analysis
of George and Bush as a nominal constituent. what, however, does not produce a constituent with
its successor does but instead forms a discontinuity with believe in the DPTB. Clearly, the model
should be able to distinguish these two cases in its representation.

On the basis of supertags only, which constitute discrete categories (here: S[wq]/(S[q]/NP)
and N/N), the parser appears to learn distinct contextual token representations that lead to more
competence in the prediction of constituent parsing transitions, as the results of CCGgate suggest.
The neural model has no information as to the workings of the CCG formalism or the internal
patterns of categories and only benefits from the fact that the category distinctions rooted in
differences in argument and return structure used in the CCGrebank seem to correspond statisti-
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cally in some capacity with distinctions in constituent structure analysis. But when supervising
head-dependency information at a higher level than CCG supertagging, these useful distinctions
between supertag assigned tokens seem to be partially overridden harming the model’s competence.
Naturally, this particularly affects discontinuous constituents and the parser’s ability to recognise
them, as indicated by the decline in discontinuous recall.

Other Auxiliary Tasks Table 6.5 shows the results of the experiments with other auxiliary
tasks as well as CCGgate, the baseline and the 3-layer gated control model for comparison. The
scores may serve as a first examination of the potential synergies between discontinuous constituent
parsing and different kinds of syntactic sequence labelling tasks.

Model P R F DP DR DF POS AUX Auxiliary label count
original 91.5 91.3 91.4 76.1 66.4 70.9 97.2 – –
baseline 91.45 91.15 91.30 79.95 65.25 71.85 97.25 – –
CCGgate 91.86 91.67 91.77 82.48 68.61 74.91 97.22 92.85 1574
LCFRSgate 91.5 91.38 91.44 78.42 66.82 72.15 97.30 87.0 4504
Chunkgate 91.94 91.66 91.8 82.22 66.37 73.45 97.25 99.29 22
Depgate 91.73 91.39 91.56 80.34 63.23 70.77 97.25 87.67 1634
LTAGgate 91.55 91.35 91.45 80.38 67.04 73.11 97.13 94.72 1202
Ctrgate

3 91.82 91.56 91.69 78.2 69.96 73.85 97.23 – –

Table 6.5: Results of additional experiments with a variation of auxiliary tasks on the DPTB
development set. P, R and F are precision, recall and F-score. DP, DR and DF are discontinuous
precision, recall and F-score. POS is POS-tagging accuracy while AUX refers to the respective
auxiliary task accuracy. The best score for each metric across all models is set in bold, except for
AUX which is incomparable.

Despite the success of Ruprecht and Mörbitz (2021) with grammar-based discontinuous con-
stituent parsing using LCFRS-based supertags, the LCFRSgate model leads to a decline in both
F-score (-0.25) and discontinuous F-score (-1.7) compared to the control model. Similar to the
CCG models, discontinuous precision slightly increases while recall decreases which suggests that
this phenomenon is not rooted in the kind of supertags used but has more to do with overfitting
and data sparseness for distinct rare labels assigned to discontinuous structures.

The generally poor results of LCFRS supertagging as an auxiliary task might be explained with
the large number of distinct labels (4504) which aggrevates the problem of data sparseness and
makes it more difficult to build shared common representations in a multi-task environment.

Chunking as an auxiliary task improves general precision (+0.12), recall (+0.1) and F-score
(+0.11) when compared to Ctrgate

3 . For discontinuous constituents only, precision is improved
significantly (+4.02) while recall worsens (-3.59) leading to a slight decline in F-scoree (-0.4). It
is not surprising that the integration of chunking as an auxiliary task makes the recognition of
long-range dependencies more difficult since the task does not correlate discontinuous chunks with
each other.

Performing joint dependency parsing and constituent parsing leads to lower F-score (-0.13) and
discontinuous F-score (-3.08) compared to the control model Ctrgate

3 . Furthermore, the model
experiences the lowest discontinuous recall amongst the auxiliary models compared in table 6.5.
This is surprising since I expected long-distance syntactic dependencies to be a good indicator
of discontinuous constituency. In section 3.2.6 I discussed the results of Coavoux et al. (2019)
who show that lexicalisation as a component of transition systems decreases parsing score due to
duplicating some transition types and leading to more complicated oracles. The results of Depgate

show that softly reintroducing the notion of constituent heads as a dependency prediction objective
from the underlying contextualised token representation does not have a favourable effect either.
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This may be an indicator that dependency parsing, or at least the relative POS-based encoding
used here, conflict with the lexicalised information and the head rules that Coavoux et al. (2019)
assume LSTMs to learn implicitly.

Using LTAG-spinal supertags decreases F-score (-0.24) and discontinuous F-score (-0.74) rel-
ative to the control model. LTAGgate performs only slightly better than the LCFRSgate model
despite not being hampered by an unsuitably large number of distinct labels. I think that this
result can in part be explained by the fact that Shen et al. (2007) remove subcategorisation in-
formation from their supertags. For instance, elementary trees of transitive and ditransitive verbs
are the same in LTAG-spinal (Shen et al., 2007). But these distinctions would benefit parsing if
they were induced in the network’s contextualised token representations. Predicting subcategori-
sation structure from a number of possible choices requires a model to learn to retrieve contextual
information in the input sequence effectively. Furthermore, it is a form of pre-disambiguation of
parsing actions. Predicting LTAG-spinal supertags retains too much ambiguity in terms of the
constituent structure patterns that can match a lexical category assignment.

The experimental results show that the CCG model is the best-performing auxiliary model in
terms of discontinuous F-score among the five types of syntactic sequence labelling tasks explored.
The Chunkgate model is unique in that the auxiliary task only covers 10% of the total number of
training instances. It shows that auxiliary objectives can be benefitial even in cases of significant
imbalance in terms of dataset sizes. The success of the chunking task might also be attributed to
the small set of distinct labels (22). It may be a coincidence but is striking nonetheless that general
F-score tends to behave inverse proportionally to the number of auxiliary task labels in table 6.5,
an exception being LTAG-spinal which performs poorly despite being the supertag task with the
smallest number of labels. For further research it might therefore be worthwhile to investigate
whether models that dispense of supertag training entirely and only learn to predict deconstructed
subcomponent tasks with smaller label set sizes can have a positive effect on parser performance.

6.3.3 Per-Phenomenon Evaluation

Using only F-score, precision and recall as evaluation metrics for discontinuous parsing does not
allow for a detailed analysis and is hard to interpret. While the metrics of discontinuous F-
score, discontinuous precision and discontinuous recall provided by disco-dop allow for a general
evaluation of the performance on long-range dependencies, they do not give information about
structurally distinct discontinuous phenomena like wh-extraction or circumpositioned quotations
which leaves the syntactic capabilities of a parser unclear.

In order to achieve a finer-grained analysis several strategies have been explored. A compar-
ison of the approaches suggested so far is presented by Coavoux (2021) and will be reproduced
briefly in the following. Evang (2011) performed a manual analysis classifying sentences from the
development set of the DPTB according to the types of discontinuity that appear in them and
manually checked the resulting representations constructed by a PLCFRS parser. Coavoux et al.
(2019) follow this strategy in the evaluation of their ML-Gap parser. As Coavoux (2021) note,
manual evaluation is very time consuming and has to be repeated in full length for every newly
developed parser.

Maier et al. (2014) created a testsuite for German called discosuite which allows the automatic
evaluation of different types of discontinuous structures found in the TIGER treebank. To achieve
this, they annotated sentences from the corpus with the long-range phenomena found in them and
by this means makes a per-phenomenon evaluation possible.

Inspired by this idea Coavoux (2021) released a phenomenon-driven test suite for English.49

They reuse the categories previously employed for manual error analysis by Evang (2011) and
49Found as supplementary material here: https://aclanthology.org/2021.findings-acl.288
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Coavoux et al. (2019) and, ignoring unprojectivity resulting only from punctuation, categorise all
discontinuous trees from the DPTB delevopment set according to one or several discontinuity types
resulting in 266 tree instances (16% of the dataset). The per-phenomenon evaluation is achieved
by retrieving the number of gold, correct and incorrect discontinuous constituents for each tree
individually using disco-dop and then aggregating the results for each type. Two separate scores
with and without labelling are included.

In the following, I use the testsuite provided by Coavoux (2021) to retrieve detailed and linguis-
tically meaningful information about the syntactic capabilities of the supertag-enriched approaches
presented in this work.

Effects of the Pipeline Approach Table 6.6 reports the per-phenomenon results of the Pipebank

model as well as the best-scoring auxiliary task model CCGgate. For each metric, the absolute
improvement/decline relative to the baseline is included.

For Pipebank relevant increases in F-score can be observed for it-extraposition (+7.9), dis-
continuous dependency (+3.5) and circumpositioned quotation (+2.9). Improvements for It-
extrapositions have been predicted by the manual comparison of the treatment of discontinuous
phenomena in section 5.3. The increase in F-score for the other two categories is rather unex-
pected. Furthermore, contrary to the analysis in section 5.3 that suggested a beneficial correlation
for wh-movement and fronted quotation, the F-score of these types actually decreases (-3.2 and -2.1
respectively). While both recall and precision drop, the decline in precision is larger (-5,6 extrac-
tion; -2.8 fronted quotation). These two phenomena are the most significant classes of discontinuity
so that their relatively small decrease in F-score dominates the overall results.

The increase in F-score for it-extrapositions is caused by better recall (+8.3). I assume that
the unique category NP[expl] assigned to expletive uses of it by the supertagger makes it easier for
the parser to recognise discontinuities of this type.

For discontinuous dependency the increase in F-score is driven by a significant improvement in
precision (+7.1). This effect is surprising since the manual analysis of phenomena did not suggest
clear synergies in these cases due to extraposed dependents not encoding their correct attachment
point in their category. Perhaps supertags helped to distinguish the boundaries of continuous
subsections which allowed for a more precise analysis. I will investigate this result closer in section
6.3.5.

No change can be observed in the small class of subject inversion. The largest improvement
in F-score occurs for sentences with two extractions (extraction+extraction; +15.3). While this
class with only five instances is too small to draw statistically relevant conclusions, the result
might indicate that lexical category assignments helped the scorer to differentiate between the two
extractions through CCG category distinctions.

The unlabelled results are close to the results in the labelled case. A notable exception are
all metrics for circumpositioned quotations which a noticeably higher when not including labels.
This is coherent with the baseline and with previous results of Coavoux (2021). He traces the fall
in labelled scoring back to cases where the discontinuous quotation exhibits an infrequent label
like FRAG or SINV. Compared with the baseline, the unlabelled F-score for Pipebank decreases
slightly (-0.3) while the labelled score increases (+2.9), driven by recall (+8.0), which suggests that
supertag information may have helped to recognise labels for such infrequent cases.

Overall, it can be seen that recall generally increases or only decreases slightly for the pipeline
approach with the exception of combined discontinuous dependency and wh-extraction (-11.8).
The network does not experience the drop in discontinuous recall inherent to the auxiliary models.
Precision fluctuates more reflecting the mixed informativeness of CCG supertags for constituent
parsing. CCG supertags as an input feature make analysing some types of discontinuity (wh-
extraction, fronted quotation, circumpositioned quotation) correctly more difficult for the parser.
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It could be that the parser learned to identify functors, arguments and argument directions in
CCG supertags. For instance it could have internalised the fact that supertags assigned to fronted
wh-words like S[wq]/(S[q]/NP) predict an argument to the right and thus wrongfully merges the
right neighbour constituent leading to less precision. A deeper investigation of this issue is provided
in section 6.3.5.

Effects of the Auxiliary Approach For the auxiliary task model, improvements in the labelled
case can be observed for wh-extractions (+2.4) and it-extrapositions (+7.9) which is true to the
assumptions. However, like in the pipeline model, albeit to a smaller extent, F-score for fronted
quotations decreases (-0.7).

For discontinuous dependency, circumpositioned quotations and subject inversion the manual
analysis in section 5.3 did not suggest transparent correlations when including supertags in the
parser. Indeed a significant drop for circumpositioned quotations can be observed (-8.4). On
the other hand, discontinuous dependency F-score increases (+4.2) similar to the pipeline model.
Precision even exhibits twice the amount of improvement as in CCGbank (+13.7). The integration
of supertagging as an auxiliary task has no effect on subject inversion.

The decrease in F-score pertaining to circumpositioned quotations is caused by a degradation
of both recall (-8.0) and precision (-7.8). This differs from the pipeline result where recall increased
(+8.0) and may be due to the fact that circumpositioned quotations feature some rare categories
that the auxiliary model is trained to predict while depccg rebank is only trained on the 511 most
frequent supertags. Thus, this type of discontinuity might suffer from training data sparseness in
the auxiliary approach.

As section 5.3 showed, the analysis of circumpositioned quotations generally seems to be in-
consistent in the CCGrebank. Thus, conditioning a shared representation to predict supertags
for such cases likely introduces a lot of noise. It may also suggest that the pipeline-model was
able to identify uninformative assignments that it learned to ignore while the auxiliary model was
conditioned to learn a shared representation for conflicting analyses.

The trends are roughly mirrored in the unlabelled case. Overall the improvements of the
auxiliary approach compared to the pipeline model occur across most of the types of phenomena
with the exception of circumpositioned quotiations. The phenomenon-specific analysis confirms
that joint learning is more effective in building representations that can benefit from correlations
between CCG lexical category assignments and discontinuous constituent parsing.

6.3.4 Error Analysis

In addition to the per-phenomenon analysis, the test suite released by Coavoux (2021) automati-
cally classifies errors according to structural patterns. For this, the author builds on the standard
Berkeley Parser Analyser (Kübler et al., 2009) and extends it to discontinuous trees. Errors in
the predictions are classified according to manually defined patterns by analysing transformations
that convert the predicted tree into the gold tree. Coavoux (2021) reports the following error types
specifically for discontinuous nodes:

1. PP attachment

2. NP internal structure

3. Modifier Attachment

4. Unary constituent

5. Different label

6. Clause attachement
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7. Coordination

8. NP attachment

9. VP attachment

After classification, for each category the number of error occurrences as well as the number of
node errors involved is returned.

Table 6.7 contains the results of the error analysis on the models of this work. Changes relative
to the baseline are included in parentheses. I will focus on comparing errors on discontinuous nodes
specifically. The largest contributor to discontinuous errors in the baseline model is erroneous
attachment of constituents. Both the pipeline and the auxiliary model significantly reduce the
number of discontinuous PP attachment errors (-25.7%, -22.9%) and modifier attachment errors (-
25.0%, -33.3%) as well as the number of affected nodes. This shows that CCG supertag information
can be very helpful for a parser to resolve PP and modifier attachment ambiguities. I assume that
this is a significant factor for the improvements in extraposed dependency score where appended
discontinuous PP constituents are frequent.

baseline Pipebank CCGgate

Error type Count Nodes Count Nodes Count Nodes
PP attachment 513 1076 446 (-13.1%) 1045 (-2.9%) 438 (-14.6%) 952 (-11.5%)
⌞ discontinuous 35 58 26 (-25.7%) 37 (-36.2%) 27 (-22.9%) 41 (-29.3%)

Unclassified 452 585 400 (-11.5%) 518 (-11.5%) 397 (-12.2%) 541 (-7.5%)
Single word phrase 386 453 353 (-8.5%) 422 (-6.8%) 352 (-8.8%) 409 (-9.7%)
Unary 325 325 339 (+4.3%) 339 (+4.3%) 321 (-1.2%) 321 (-1.2%)
⌞ discontinuous 0 0 2 (+∞%) 2 (+∞%) 0 (+0.0%) 0 (+0.0%)

Different label 268 538 214 (-20.1%) 442 (-17.8%) 255 (-4.9%) 513 (-4.6%)
⌞ discontinuous 17 36 19 (+11.8%) 52 (+44.4%) 19 (+11.8%) 41 (+13.9%)

Modifier attachment 261 449 258 (-1.1%) 482 (+7.3%) 229 (-12.3%) 447 (-0.4%)
⌞ discontinuous 12 17 9 (-25.0%) 14 (-17.6%) 8 (-33.3%) 14 (-17.6%)

NP internal structure 258 318 262 (+1.6%) 339 (+6.6%) 253 (-1.9%) 317 (-0.3%)
⌞ discontinuous 0 0 0 (+0.0%) 0 (+0.0%) 1 (+∞%) 1 (+∞%)

Clause attachment 192 457 187 (-2.6%) 462 (+1.1%) 192 (+0.0%) 496 (+8.5%)
⌞ discontinuous 26 44 27 (+3.8%) 50 (+13.6%) 27 (+3.8%) 38 (-13.6%)

Co-ordination 158 452 150 (-5.1%) 456 (+0.9%) 146 (-7.6%) 413 (-8.6%)
⌞ discontinuous 6 11 3 (-50.0%) 8 (-27.3%) 3 (-50.0%) 8 (-27.3%)

NP attachment 105 316 119 (+13.3%) 363 (+14.9%) 108 (+2.9%) 354 (+12.0%)
⌞ discontinuous 17 13 20 (+17.6%) 29 (+123.1%) 16 (-5.9%) 18 (+38.5%)

VP attachment 51 245 44 (-13.7%) 189 (-22.9%) 44 (-13.7%) 186 (-24.1%)
⌞ discontinuous 5 8 4 (-20.0%) 7 (-12.5%) 5 (+0.0%) 8 (+0.0%)

XoverX Unary 11 11 10 (-9.1%) 10 (-9.1%) 10 (-9.1%) 10 (-9.1%)

Table 6.7: Error types for the models including the baseline on the development set. Discontinuous
counts are included in the respective main category. Changes relative to the baseline in percent
are included in parentheses.

Discontinuous clausal attachment errors increase for Pipebank (+3.8%) and for CCGgate (+3.8%).
Discontinuous NP attachment errors only increase in count for the pipeline model (+17.6%) while
they drop for the auxiliary model (-5.9%). Yet, the number of nodes affected increases for both
models and the metrics also significantly increase for the general (including projective errors) case.
The supertag-enriched models appear to experience some difficulties in the treatment of discontin-
uous NPs.

Errors due to wrong label assignments on discontinuous constituents increase for both models
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by 11.8% relative to the baseline. This is striking considering the fact that the general error count
for different labels decreases both for the pipeline model (-20.1%) and for the auxiliary model
(-4.9%). Recall that CCG supertags are designed as structural descriptions operating on a small
number of atomic categories (NP, S, ...). Thus, some discontinuous phenomena that are assigned
different labels in the DPTB due to linguistic motivation may be structurally similar in terms of
their CCG supertag analysis which makes assigning the correct node label more difficult for the
parser.

Overall, the effect of the inclusion of supertags on different error types does not follow a uniform
trend. While the results of Pipebank and CCGgate share some similar patterns (e.g. discontinuous
PP attachment, discontinuous different label) some types of errors (e.g. general unary, general NP
internal structure, discontinuous clause attachment) seem to be dependent on the kind of supertag
integration. This may either be a hint at differences between the CCGbank and the CCGrebank
analysis and/or further support for the ability of the auxiliary approach to leverage synergies that
single-task models are not able to profit from.

6.3.5 Sample Analysis

In sections 6.3.3 and 6.3.4 several observations regarding the models’ performance on wh-movement,
fronted quotations and extraposed dependents were made that deserve closer investigation. In the
following, I will conduct a more detailed analysis using samples from the models’ predictions on
the DPTB development split.

Comparing Auxiliary and Pipeline: wh-movement The per-phenomenon analysis in sec-
tion 6.3.3 showed that F-score for wh-extraction is reduced relative to the baseline in the pipeline
approach while it increases in the CCGgate model. To investigate the performance on wh-extraction
in more detail, I computed separate scores for each trigger of frontation in the DPTB development
split, listed in table 6.8. Sentences are assigned to the categories using annotations found in the
supplementary material of Coavoux (2021).

Pipebank CCGgate

Trigger Count Exact
match

Partial
match Precision Recall F Exact

match
Partial
match Precision Recall F

when 35 85.7
(+0.0)

94.3
(+2.9)

90.5
(+0.5)

90.5
(+4.8)

90.5
(+2.7)

88.6
(+2.9)

94.3
(+2.9)

95.0
(+5.0)

90.5
(+4.8)

92.7
(+4.9)

where 14 85.7
(+0.0)

85.7
(+0.0)

95.5
(+0.0)

91.3
(+0.0)

93.3
(+0.0)

85.7
(+0.0)

85.7
(+0.0)

95.5
(+0.0)

91.3
(+0.0)

93.3
(+0.0)

which 12 58.3
(-16.7)

75.0
(-16.7)

85.7
(-10.5)

64.3
(-25.0)

73.5
(-19.1)

75.0
(+0.0)

91.7
(+0.0)

81.2
(-15.0)

92.9
(+3.6)

86.7
(-5.9)

how 9 66.7
(+0.0)

77.8
(+0.0)

52.4
(-16.4)

57.9
(+0.0)

55.0
(-7.9)

77.8
(+11.1)

88.9
(+11.1)

80.0
(+11.2)

84.2
(+26.3)

82.1
(+19.2)

that 9 44.4
(+0.0)

66.7
(+0.0)

94.7
(+0.9)

75.0
(+12.5)

83.7
(+8.7)

33.3
(-11.1)

55.6
(-11.1)

92.3
(-1.5)

50.0
(-12.5)

64.9
(-10.1)

what 9 66.7
(-11.1)

77.8
(+0.0)

66.7
(-13.3)

61.5
(+0.0)

64.0
(-5.6)

77.8
(+0.0)

88.9
(+11.1)

90.9
(+10.9)

76.9
(+15.4)

83.3
(+13.7)

Table 6.8: Labelled evaluation results specific to lexical triggers of wh-extraction. Absolute im-
provements over the baseline are included in parentheses. Only cases with at least five occurrences
are reported.

Section 5.3 suggested that the CCG analysis for wh-extraction is dependent on the syntactic
function of the fronted word. More specifically: in cases where the wh-word represents an argument
required by the predicate of the sentence it would be easier to resolve for the parser since the verb’s
supertag would provide it with the information where to attach the question word while adjunctive
frontation where the wh-word does not match an argument slot in the verb would be more difficult
for the parser, e.g. in the case of how.
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The evaluation results in table 6.8 are not that clear-cut. F-score for which, thought to be
encoded as a core-argument, drops for both models (pipeline: -19.1, auxiliary -5.9) while the score
for when, being purely adjunctive, increases (+2.7, +4.9). The differences in F-score between
Pipebank and CCGgate result from extrapositions of how and what on which the pipeline model
performs worse than the baseline while the auxiliary model significantly increases F-score. Likewise
noteworthy is the improvement on that-extraposition in the pipeline model (+8.7) caused by better
recall (+12.5) while recall (-12.5) causes a drop in F-score for this type in the auxiliary task model
(-10.1). Interestingly, it is the only wh-word where the auxiliary model exhibits a degradation of
recall.

Let us look at an example for the wh-word how. Figure 6.11 shows part of the gold DPTB
derivation for the sentence in (6.6a) which is retrieved correctly by CCGgate. The constituent how
long is extraposed to the front and forms a discontinuous verbal phrase together with the VB take,
its NP argument and the S constituent to make a contribution. The Pipebank model returns the
faulty analysis reproduced in figure 6.12. Here, the final S-constituent is not analysed as part of
the VP but instead a discontinuous nominal phrase with it as an additional member is predicted,
suggesting an occurrence of it-extraposition, and attached at the top-level S node.

(6.6) a. “ The question is how long it ’s going to take Barry Wright to make a contribution , ”
says F. John Mirek , an analyst at Blunt Ellis Loewi in Milwaukee .

b. While reaching blockbuster proportions yesterday, the volume was still well within the
600 million-share capacity that the exchange has said it can handle daily since beefing
up its computers after the October 1987 crash.

Figure 6.13 shows the CCGrebank supertag assignments which were used to train the auxiliary
model as well as the corresponding derivation. The long-range dependency is realised through an
additional NP argument for take. The wh-word how expects an N argument to its right, which is
filled by long, and as a second argument a declarative sentence category with an unfilled NP slot.
This way, it “consumes” the rest of the sentence. how is actually not realised as an adjunctive
category but conforms with the way core wh-extractions were analysed in section 5.3. Furthermore,
this coincides exactly with the orginal CCGbank assignments. The fact that wh-words that I
thought to be purely adjunctive indeed match argument slots with their discontinuous counterpart
in the CCG analysis may in part explain why the differences in performance between the triggers
for wh-extraction in table 6.8 are not as clear-cut as predicted.

Figure 6.14 contains the 1-best supertags generated by standard depccg for the sentence in
(6.6a). They deviate from the CCGbank which was used to train the supertagger in that take is
only assigned one right NP argument. Furthermore, how does not expect a function with range
S[dcl] and a missing NP argument to the right any more but only a complete S[dcl] type.

As figure 6.12 shows, the parser was still able to recognise the discontinuous relationship of
how long and take. The error occurs thereafter. I assume that the parser learned that the tag
((S[b]\NP)/(S[to]\NP))/NP has only two arguments and is misled by this assignment provided
by depccg. When the transition system combines how long and take it implicitly recognises one
argument slot as filled and then fills the second slot with Barry Wright. The scorer notices that
the following S constituent surpasses the arity of take so it predicts an alternative attachment
point being led by the fact that to make a contribution can be combined to a category that looks
for an NP to its left. Therefore, it merges with the NP it — a construction not uncommon for
it-extrapositions.

The baseline model also commits the error of merging to make a contribution with it. These
observations can be taken as an example for the help CCG predicate-argument structure can
provide to the constituent parser and showcases how the auxiliary model is able to profit from
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Figure 6.11: Gold derviation wh-extraction using how in the DPTB.

synergies between DPTB constituents and CCG category assignments.
However, the picture is not always that clear. (6.6b) gives an example for wh-extraction caused

by the relative pronoun that. Figure 6.15 shows the DPTB analysis of this sentence which the
pipeline model is able to construct correctly. However, the auxiliary model attaches that at a
higher level predicting an additional intermediary S-node that constitutes a discontinuity between
that and it can handle daily... (figure 6.16). Thus, the fronted wh-word is analysed as a modifier
at sentential level instead of as a verbal argument. This leads to lower recall since that is missing
as part of the lower-level unprojective constituents SBAR, S, VP and VP.

Figure 6.17 depicts the CCG category assignments provided by the CCGrebank while figure 6.18
contains the 1-best predictions of the depccg supertagger which exactly coincide with the original
CCGbank. Both supertag sequences are the same except for minor differences: that being an
N-modifier in CCGrebank and an NP-modifier in CCGbank, the categorial type NP[nb] occurring
only in the CCGbank and the particle up being an argument of beefing in the rebank but an adjunct
in the original treebank. Differences in analysis can therefore not be attributed to deviating lexical
category assignments.

It seems as if the model had analysed that and it can handle daily ... as a circumpositioned
quotation, being triggered by the occurrence of the word said. The per-phenomenon analysis
in section 6.3.3 has already shown that the auxiliary model performs worse on circumpositioned
quotations than the baseline while Pipebank improves F-score for this category. Apparently the
inconsistent CCGrebank gold categories introduce so much noise into the network the analysis of
other types of discontinuities is negatively affected as well.

Another factor may be the fact that with increasing sentence length it may become harder for
the parser to identify whether a missing argument should be filled with some successor item or with
an extraposed constituent. In this case, when having reached handle the discontinuous constituent
parser must decide whether to perform a Merge or to Shift to fill the NP argument slot with
some right neighbour. Therefore, it needs to know if an adjacent subsection of the remaining
sequence can be reduced to an NP. Through category assignment alone this cannot be ruled out
since NP appears twice as a functor in the remainder of the sentence (its and the). Therefore, the
model would need to perform a shallow form of CCG parsing. This information must be construed
by the multi-layer biLSTM network. I suppose that the neural model has difficulties performing
such an implicit derivation in cases of long input sequences.
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Figure 6.12: Faulty derivation of wh-extraction with how produced by the Pipebank model. Instead
of attaching to make a contribution to the VP dominating how long, take and Barry Wright, it
predicts another discontinuity merging with it.

Unexpected Decrease: Fronted quotations Contrary to the analysis in section 5.3 which
suggested a transparent correlation between the analysis of fronted quotations in the DPTB and
the supertag assignments in the CCGrebank, where both the fronted quotation and the subject of
the quotative verb are encoded positionally as arguments, the per-phenomenon analysis in section
6.3.3 showed that F-score for this type of discontinuity decreases in the Pipebank model (-2.1)
and in the CCGgate model. A drop in precision is the primary cause. In (6.7) I have included a
sentence that features a fronted quotation which the baseline model analyses correctly (cf. figure
6.19). However, the auxiliary model produces erroneous output by including the predicate phrase
After the game into the discontinuous VP as part of the quotation, as can be seen in figure 6.20.

(6.7) After the game ( “ Bluefield lost , 9-8 , stranding three runners in ... the ninth , ” he
noted ) , trouble began .

The sentence in (6.7) is an unusual example since the quotative clause is embedded into paren-
theses. Assigning a CCG analysis to them apparently was problematic which is why the sentence
was left out from the CCGbank and its rebanked successor. For this reason it is also not present
in the CCG training dataset used for CCGgate so that it, and possibly similar sentences, were
underrepresented during training. Therefore, the model might have not learned to treat clauses
encapsulated by parentheses as single units. At the same time, most fronted quotations start at
the beginning of the sentence. Thus, the network is misled by the usual analysis of a PP like After
the game as a modifier of the following S category and attaches it projectively to the quotation.

On a similar note, I suspect that the reintegration of quotation marks in the CCGrebank is
a factor for the better score of the auxiliary model compared to Pipebank. When providing the
depccg standard model with quotations surrounded by quotation marks, it simply analyses them
as sentential modifiers like S/S which may conflict with traditional sentential modifiers that behave
differently while the CCGrebank assigns special categories LQU and RQU. Training the model to
predict these labels may have induced knowledge about the restrictions for functional application
across quotation mark boundaries.
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Figure 6.19: Gold derivation of a fronted quotation encapsulated in parentheses in the DPTB.
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Figure 6.20: Faulty derivation of a fronted quotation encapsulated in parentheses output by the
CCGgate model.

Unexpected Increase: Discontinuous Dependencies The per-phenomenon analysis in sec-
tion 6.3.3 has shown consistent improvements in precision and recall for discontinuous dependencies
for both Pipebank and CCGgate. F-score for the former increases by +3.5 absolute points compared
to the baseline while the score for the latter rises by +4.2 points. This result is surprising since the
manual analysis of this type of discontinuity in section 5.3 suggested that the CCG formalism does
not feature a transparent and consistent way to encode such relationships. In the examples that
were examined, the right part of the discontinuous constituent was assigned a functional category
that suggests analysing it as a modifier of the middle constituent surrounded by the discontinuity
(cf. figure 5.21).

In his supplementary material Coavoux (2021) includes information about the structure of
extraposed dependents in the DPTB development dataset in form of the label(s) of the node(s)
that are surrounded by the long-range dependency, called gap here, and the node label(s) of the
appended subsection of the discontinuous constituent, abbreviated to right. I use these assign-
ments to compute separate scores which shed light on the parsers’ increased competence regarding
discontinuous dependencies.
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Pipebank CCGgate

Gap Count Exact
match

Partial
match Precision Recall F1

Exact
match

Partial
match Precision Recall F1

PP 19 42.1
(+10.5)

42.1
(+10.5)

88.9
(+22.2)

36.4
(+9.1)

51.6
(+12.9)

47.4
(+15.8)

47.4
(+15.8)

90.9
(+24.2)

45.5
(+18.2)

60.6
(+21.9)

VP 10 0.0
(-10.0)

0.0
(-10.0)

0.0
(-100)

0.0
(-10.0)

0.0
(-18.2)

0.0
(-10.0)

0.0
(-10.0)

0.0
(-100)

0.0
(-10.0)

0.0
(-18.2)

NP 5 60.0
(+20.0)

60.0
(+0.0)

100
(+0.0)

50.0
(+0.0)

66.7
(+0.0)

20.0
(-20.0)

20.0
(-40.0)

100
(+0.0)

16.7
(-33.3)

28.6
(-38.1)

Table 6.9: Labelled evaluation results for discontinuous dependency according to the node label
of the gap element. Absolute improvements over the baseline are included in parentheses. Only
cases with at least five occurrences are reported.

Pipebank CCGgate

Right Count Exact
match

Partial
match Precision Recall F1

Exact
match

Partial
match Precision Recall F1

SBAR 13 23.1
(+7.7)

23.1
(+7.7)

100
(+60.0)

21.4
(+7.1)

35.3
(+14.2)

7.7
(-7.7)

7.7
(-7.7)

50.0
(+10.0)

7.1
(-7.2)

12.5
(-8.6)

S 11 72.7
(+9.1)

72.7
(+9.1)

88.9
(-11.1)

66.7
(+8.4)

76.2
(+2.5)

63.6
(+0.0)

63.6
(+0.0)

100
(+0.0)

58.3
(+0.0)

73.7
(+0.0)

PP 7 0.0
(+0.0)

14.3
(+0.0)

50.0
(-50.0)

9.1
(+0.0)

15.4
(-1.3)

14.3
(+14.3)

28.6
(+14.3)

100
(+0.0)

27.3
(+18.2)

42.9
(+26.2)

Table 6.10: Labelled evaluation results for discontinuous dependency according to the node label
of the right element. Absolute improvements over the baseline are included in parentheses. Only
cases with at least five occurrences are reported.

It can be seen that the improvements in F-score for both models are caused by a solid increase
in competence of the analysis of prepositional phrase gap elements (pipeline: +12.9, auxiliary:
+21.9), with the improvement being strongly driven by better precision. Furthermore F-score
for PP right elements increases significantly for the auxiliary model (+26.2). This confirms the
previous finding from the error analysis in section 6.3.4 which showed reductions in PP attachment
errors.

Both models experience a striking reduction in VP gap F-score (-18.2) resulting in a worst-
possible score of 0.0. For CCGgate this is combined with a reduction for SBAR right elements
(-8.6) which is a common combination for discontinuous NP constituents as in figure 5.20.

A manual analysis showed that the drop in F-score for cases with VP nodes in the gap indeed
corresponds to misleading supertag assignments such as in figure 5.21. The appended half of the
discontinuous constituent is assigned a supertag in the CCGrebank that takes as argument the
gap verb with all object slots filled ((S\NP)\(S\NP)), i.e. it acts as a VP modifier. The parser
learns to predict this supertag and is misled by the fact that standard projective VP modifiers
carry the same supertag. Thus, it wrongly merges the gap element with the right constituent part,
not constructing a discontinuity at all.

In other cases of discontinuous dependency, the CCG category assignments appear to be closer
to the DPTB constituent structure. Take for instance (6.8a) which features a discontinuous NP
category. Figure 6.21 shows part of its DPTB gold tree which is correctly retrieved by CCGgate

except that the topmost VP and its NP daughter are merged into a single VP node.

(6.8) a. The institutions appeared confident Japanese regulators would step in to ensure or-
derly trading if necessary , and there was considerable speculation during the day
that the Finance Ministry was working behind the scenes to do just that .

b. The need for hurried last-minute telephone negotiations among market officials will
disappear once rules are in place that synchronize circuit breakers in all markets .
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Figure 6.21: DPTB derivation including a discontinuous dependency with a PP gap element and
an SBAR right element.

Figure 6.22 reproduces the corresponding CCGrebank category assignments. The appended
part which can be reduced to S[em] is encoded as a core argument of speculation and not as a
modifier of the gap. Thus, the relationship between the two parts of the discontinuous constituent
has a direct correspondent in the supertag assignments. The parser is able to profit from the fact
that the relative clause is encoded as a core argument of speculation. While during the day lies
in between the two elements and has a category that suggests merging with speculation (function
(N/S)\(N/S)), the parser is able to identify that this category encodes an adjunct and should
be merged after attaching the core argument that the Finance Ministry .... I assume that the
distinction between arguments and adjuncts in CCG is a deciding factor for the model’s ability to
profit from supertag assignments.

there was considerable speculation during the day that the Finance Ministry was working ...
NP[thr] (S[dcl]\NP[thr])/NP N/N N/S[em] ((N/S)\(N/S))/NP NP S[em]/S[dcl] S[dcl]

> >
(N/S)\(N/S) S[em]

<
N/S[em]

>
N

>
N

<uuu>
NP

>
S[dcl]\NP[thr]

<
S[dcl]

Figure 6.22: CCGrebank supertag assignment for a sentence that includes discontinuous depen-
dency with a PP gap element and an SBAR right element.

For VP gap elements the problem lies in that the verb serves as the head of the whole clause
in CCG and bridging it while retaining the relationship between the discontinuous constituent’s
substructures would necessitate encoding the appended S[em] constituent as an argument of spec-
ulation. This could be done by changing the assignments from those in figure 5.21 to figure 6.23
where N of evidence becomes NP/S[em] and is combined via crossed backward composition with
surfaced, retaining the S[em] argument in the result. Alternatively, the argument and return type
of surfaced could be changed to reflect the new S[em] argument of evidence which would give rise
to an explosion of new verbal category types (figure 6.24). Both approaches have the problem that
they come with the need of marking a new syntactic argument at the left NP category. One could
justify this by viewing the right discontinuous part as an argument clause of the noun, but the
linguistic motivation would definitely be questionable for relative clauses like in (6.8b). All in all,
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cases like these will likely remain to pose a challenge in CCG-enriched models due to the properties
of the CCG formalism.

In April 1987 , evidence surfaced that commissions were paid
S/S NP/S[em] S[dcl]\NP S[em]/S[dcl] S[dcl]

<BBB× >

S[dcl]/S[em] S[em]
>

S[dcl]
>

S[dcl]

Figure 6.23: Alternative CCG supertag assignment for discontinuous dependency using crossed
composition.

In April 1987 , evidence surfaced that commissions were paid
S/S N/S[em] (S[dcl]/S)\(N/S) S[em]/S[dcl] S[dcl]

< >

S[dcl]/S[em] S[em]
>

S[dcl]
>

S[dcl]

Figure 6.24: Alternative CCG supertag assignment for discontinuous dependency with a verbal
category that preserves the argument of its subject.

6.3.6 External Comparison

Table 6.11 shows a comparison between the pipeline model Pipebank, the auxiliary task model
scoring best on discontinuities CCGgate and results of previously proposed parsers on the DPTB.
As can be seen, CCGgate provides the highest F-score for fully supervised transition-based parsers
on the DPTB test split reported so far, surpassing the previous state-of-the-art model Coavoux
(2021), which exhibits wider word embeddings (32 vs. 300) and character biLSTM states (100 vs.
256), by 0.1 absolute points. However, with a difference of 1.2 absolute points, the model is still
far off from the overall best-scoring fully supervised model, being the grammar-less chart-based
approach of Corro (2020).

Unfortunately, discontinuous F-score turns out to be significantly worse on the test dataset than
on the development split. This is surprising since neither of these datasets was used in training.
One can see that this effect already occurred in the original stack-free parser of Coavoux and Cohen
(2019) (70.9 dev DF, 67.3 test DF) while it is absent from the Gap models from Coavoux et al.
(2019) and from Coavoux (2021) which have a similar network design.

Perhaps the discontinuous phenomena in the development split have an unusual composition
that the stack-free transition system is able to treat unusually well. During training, the algorithm
checks every four epochs if the current network iteration scores better on the development set than
the previously reported best-score and if it does, saves it. This way, a model might have been
selected that does not generalise well to normal compositions of discontinuous structures.

Table 6.11 also contains a comparison of speeds where they were reported by the respective
authors. Note that parsing speed is to a wide extent dependent on the type of implementation and
the hardware used to run the parser. I reran the evaluation for the original model of Coavoux and
Cohen (2019) to validate their reported speed of 38 sent/s which resulted in a value of 31 sent/s,
much closer to the 29 sent/s for CCGgate. I suppose that deviating from the information in their
paper, they actually use two CPU threads to run the evaluation. This is also the setting found in
the evaluation script which they provide as supplementary material. I ran the original model with
two CPU threads which produced a speed of 36 sent/s which is close to their reported speed.
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Generally, the evaluation of parsing speeds shows that while training an auxiliary task model
is computationally more expensive due to the increase in training instances and model parameters
(3 LSTM stacks instead of 2, gated residual connections), it only suffers minimal computational
penalties after deployment when compared to its single-task counterpart (delta of 2 sent/s). Pur-
suing a pipeline approach speeds up training since one can outsource supertagging for the training
corpus to the pre-processing pipeline but results in a model that is computationally more costly in
the test setting since for every sentence to predict, two full-fledged neural networks are run which
cannot be parallelised (delta of 8 sent/s).

Unfortunately, up until now, English per-phenomenon scores computed by the testsuite pro-
vided by Coavoux (2021) have only been reported for an ML-Gap-proposal by Coavoux (2021).
Table 6.12 contains a comparison of the phenomenon-specific labelled F-score of the models pro-
posed here and the ml-gap parser from Coavoux (2021) as well as the ml-gap+bert variant
which is enriched with BERT contextual embeddings. It can be seen that the CCGgate model
outperforms ml-gap in every type of discontinuity except for circumpositioned quotations. Indeed
it is striking that all models from the work at hand, including the single-task baseline parser,
perform only half as well on this class than ml-gap and ml-gap+bert.

The improvements in F-score on discontinuous dependency attributed to the integration of
BERT contextualised embeddings in the ml-gap+bert model remain unmatched. As Coavoux
et al. (2019) note, most sentences in this class have no lexical trigger like what or that which makes
recognising a discontinuity hard and requires world-knowledge. The ml-gap+bert model shows
that this can be achieved to some extent by providing lexical knowledge to the model. Yet, the
results of Pipebank and CCGgate show that there is still some improvement to gain in this domain
without using semi-supervised contextualised word-embeddings.

Phenomenon Count baseline Pipebank CCGgate ml-gap ml-gap+bert
Wh-extraction 91 84.0 80.8 86.4 79.5 89.8
Fronted quotation 71 94.3 92.2 93.6 92.3 95.8
Discontinuous dependency 37 37.9 41.4 42.1 33.3 71.1
Circumpositioned quotation 16 43.4 46.3 35.0 86.0 95.0
It-extraposition 12 58.8 66.7 66.7 55.6 81.8
Extraction+fronted quotation 7 84.2 84.2 100 97.3 100
Discontinuous dependency+extraction 5 62.9 62.1 68.8 64.5 88.2
Extraction+extraction 5 78.8 94.1 90.9 86.7 97.1
Subject inversion 5 75.0 75.0 75.0 75.0 100

Table 6.12: Comparison with previously published labelled per-phenomenon F-scores including
models ml-gap and ml-gap+bert from Coavoux (2021). Sentences where several discontinuous
phenomena occur are treated separately. Only combinations with at least 5 occurrences in the
DPTB development split are included.
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Model Type Complexity Dev Test sent/s
F1 DF1 F1 DF1 GPU CPU

Fully supervised
Evang and Kallmeyer (2011),‡, < 25 GB O(n9) 79†

van Cranenburgh and Bod (2013), ≤ 40 GB O(n9) 85.2 85.6
van Cranenburgh et al. (2016), ≤ 40 GB O(n9) 86.9 87.0 <1□

Ruprecht and Mörbitz (2021) GB O(n9) 90.1 72.9 95γ

Coavoux and Cohen (2019) TB O(n2) 91.4 70.9 90.9 67.3 38▼♢⃝

Coavoux et al. (2019) TB O(n2) 91.2 72.0 91.0 71.3 61♢

Coavoux (2021) TB O(n2) 92.0 75.9 91.4 74.4
This work, Pipebank TB O(n2) 91.5 70.2 91.4 66.8 31ϵ 23♣♡⃝

This work, CCGgate TB O(n2) 91.8 74.9 91.5 67.7 35ϵ 29♣⃝

Corro (2020) CB O(n3) 92.7 64.2 355δ

Stanojević and Steedman (2020) CB O(n6) 90.5 67.1
Corro et al. (2017) DB O(n2) 89.2 ≈7.3

Semi-supervised (Pretrained embeddings)
Ruprecht and Mörbitz (2021), fasttext+flair GB O(n9) 91.8 76.1 86γ

Coavoux (2021), fasttext TB O(n2) 92.7 78.1 92.3 76.5
Corro (2020) CB O(n3) 92.9 64.9
Vilares and Gómez-Rodríguez (2020), with
Ling et al. (2015) SL O(n2) 89.3 45.2 572β 104▲

Chen and Komachi (2023), fasttext NC O(n3) 92.1 78.1 970β

Semi-supervised (BERT-base)
Ruprecht and Mörbitz (2021) GB O(n9) 93.3 80.5 57γ

Coavoux (2021) TB O(n2) 95.0 85.8 95.0 82.5
Corro (2020)∗ CB O(n3) 94.8 68.9
Vilares and Gómez-Rodríguez (2020) SL O(n2) 91.9 50.8¸ 80β 2▲

Fernández-González and Gómez-Rodríguez
(2021) RCB O(n3) 94.0 68.9 231α

Fernández-González and Gómez-Rodríguez
(2021) RTB O(n2) 94.1 67.2 152α

Semi-supervised (XLNet)
Chen and Komachi (2023) NC O(n3) 95.0 83.0 375β

Fernández-González and Gómez-Rodríguez
(2021) RCB O(n3) 95.1 74.1 179α

Fernández-González and Gómez-Rodríguez
(2021) RTB O(n2) 95.5 73.4 133α

Table 6.11: Global comparison of parsing results on the DPTB; rounded to the first decimal
place. Complexity for grammar-based approaches assumes fan-out 3 as found in the DPTB. Types:
GB: grammar-based, TB: transition-based, CB: grammar-less chart-based, SL: sequence-labelling
based, DB: dependency-conversion based, NC: neural combinator, RCB: reorder and projective
grammar-less chart-based, RTB: reorder and projective transition-based. ∗Size of BERT not re-
ported. † Does not discount root symbols and punctuation, ‡ gold POS tags. Speeds are presented
on the test set as reported by the respective authors and dependent on hardware and implementa-
tion. GPUs: αGeForce RTX 3090, βGeForce GTX 1080 Ti, γGeForce RTX 2080, ϵGeForce RTX
2060 SUPER 8GB, δTesla V100. CPUs: ▲Intel i7-7700 @ 3.60GHz, ▼Intel i7, ♠AMD Ryzen 5 3600
@ 3.60GHz. ⃝run on single core. ♢reported on dev set. ♡including supertagging. □measured by
Ruprecht and Mörbitz (2021).
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7. Conclusion

This work explored the introduction of lexicalised syntactic information in the form of CCG su-
pertags into discontinuous constituent parsing. To this end, several approaches for parsing discon-
tinuous constituent trees have been discussed: grammar-based chart parsing for linear context-free
rewriting systems (LCFRS) as well as neural transition-based parsers (Swap, Gap, Merge) among
which the neural stack-free approach of Coavoux and Cohen (2019) was chosen as the base for the
incorporation of supertags.

After introducing combinatory categorial grammar (CCG) and the supertags it gives rise to,
I manually compared correlations between lexical category assignments found in the CCGrebank
corpus and the way different types of discontinuities are analysed in the discontinuous Penn Tree-
bank (DPTB). This analysis suggested close relationships for some forms of discontinuity like wh-
movement, fronted quotations and it-extrapositions while revealing potentially conflicting analyses
for circumpositioned quotations, extraposed dependents and subject-verb inversion. Circumposi-
tioned quotations showed to be especially troublesome since they do not seem to exhibit a coherent
and transparent analysis in the CCGrebank. The manual analysis may be helpful for designing
models in future works. It underlines the necessity to utilise architectures that can dynamically
adapt to the considerably varying phenomenon-dependent task relatedness.

The main merit of this work lies in the implementation of CCG supertagging into the stack-free
transition-based parser of Coavoux and Cohen (2019) following a pipeline and an auxiliary-task ap-
proach. For the latter, a variety of experimental settings was explored (gated residual connections,
increased network width, deconstruction of supertags) showing that care must be exercised and
adaptions must be made to benefit from shared representations for both parsing and supertagging.
Both the Pipebank model and the best-scoring auxiliary model CCGgate outperform the supertag-
less baseline in standard F-score. On discontinuities only, the pipeline model performs worse than
the baseline while the auxiliary approach proofs to be an effective means of increasing a parser’s
syntactic competence regarding long-range dependencies. The auxiliary approach also outperforms
its control model which confirms that the improvements can be attributed to the introduction of
an auxiliary objective. It show that the complex relationship of seemingly incompatible syntactic
descriptions can be effectively made use of to improve the quality of discontinuous constituent pars-
ing. It also indicates that training a multi-task model can leverage statistical correlations between
tasks to an extent a pipeline model is not able to. While the improvements are relatively modest,
they suggest that research into more adapted specialised multi-task approaches for discontinuous
constituent parsing that learn across representations is a worthwhile endeavour.

This result is closely connected with the utilisation of an alternative to the standard summative
residual connection. Gated residual connections have been empirically shown to outperform their
widely used counterpart in a hierarchical multi-task framework with stable results for biLSTM
stacks up to four levels (Ctrgate

4 ).
The mixed results of networks with additional CCG supertag-based tasks in the form of de-

composed supertags (CCGgate
multi) and head-dependency information provided by the CCGrebank

(CCGgate
dep ) indicate that care must be exercised when enriching a model with information that

goes beyond the treatment of CCG supertags as discrete categories. Head-dependency information
seems to be too close to the conflicting notion of CCG derivations. While subcomponent informa-
tion does not beat the best-scoring multi-task model CCGgate, it does improve the discontinuous
metrics compared to its four-layer control model. Noteworthy about this result is the slight im-
provement in discontinuous recall which deviates from the trend of recall drops observable in most
other multi-task models. This suggests that subcomponent training could actually be of value in
a multi-task approach.

Additionally, I provided a first systematic investigation of the usefulness of four different syn-
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tactic sequence labelling tasks as auxiliary objectives for transition-based parsing of discontinuous
constituents. While CCG supertagging shows to be most beneficial for discontinuous constituents,
the inclusion of chunking produces the best general F-score. Since the results may be influenced
to some extent by the vastly differing numbers of distinct categories, it is difficult to draw con-
clusions about the individual tasks’ informativeness for parsing. Nonetheless, the evaluation is a
good starting point for the choice of auxiliary tasks for future projects and should be transferable
to other neural parser types.

7.1. Open Questions

While this work has shown that introducing CCG supertagging as an auxiliary task for discon-
tinuous constituent parsing can yield systematic improvements in parsing score, the experiments
have not come close to the current state-of-the-art results which are dominated by models that
use XLnet (Yang et al., 2019) and BERT (Devlin et al., 2019) contextual embeddings. Thus, the
open question remains, whether CCG supertagging would provide any informative value to such
models or if the syntactic competence induced by supertagging is already overtly encoded in the
lexical information these embeddings provide.

Another question raised by this work deals with the viability of combining several types of
unrelated auxiliary tasks. Here, I have only explored multi-task learning with one additional type of
syntactic representation. The unsuccessful joint learning of CCG head-dependencies is the closest I
have come to combining several representations. As explained in section 6.3, the different auxiliary
tasks yield different types of improvements. For instance chunking improves general F-score while
CCG supertagging affects discontinuous constituents more. Judging from this, combining several
beneficial auxiliary tasks in a shared model could leverage additional synergies. However, this
also raises the risk of overfitting and necessitates a computationally expensive training procedure.
Furthermore, arranging several unrelated auxiliary tasks in a hierarchical architecture would pose
a challenge. Overall, the potential of such an exploration is unclear.

A similar question stands for the deconstruction of supertags into subcomponent labelling tasks.
Even though this approach does not perform better than the supertag-only model in this work, the
unique improvement of discontinuous recall raises the question whether the kind of deconstructions
or the model architecture can be improved upon to benefit from this effect.

In view of the recent successful discontinuous parsing approach using LCFRS-based supertags
(Ruprecht and Mörbitz, 2021), I am looking forward to exploring ways to implement LCFRS
supertagging as an auxiliary task in a neural framework effectively. Reducing the number of
supertags in an informed manner as well as finding useful subtasks with smaller label set sizes
might be the way to go.

Furthermore, questions regarding the neural architectures explored in this work remain. In
future work, I want to explore using the gated residual connections to LSTM cell outputs proposed
by Wu et al. (2016a) that inspired the simplified gated residual design in this work. Additionally,
the comparison of training and development score of the CCGgate model in figure 6.9 as well as the
results of the CCGgate

600 model (cf. figure 6.10) suggested that there might be improvements to gain
from better regularisation techniques. An interesting possibility is the application of variational
dropout for recurrent connections as proposed by Gal and Ghahramani (2016).

Lastly, the exploration of different kinds of supertags as auxiliary tasks still lacks an important
contender: lexicalised tree adjoining grammar. While the use of LTAG-spinal has not shown to be
an effective means to improve discontinuous constituent parsing results, subcategorisation infor-
mation as well as argument-adjunct distinctions inherent to traditional LTAG may be properties
akin to the characteristics of CCG supertags that have proven helpful for the parser. I am looking
forward to performing such an experiment after acquiring an LTAG-annotated corpus.
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