
Master Seminar Word Embedding Spaces:
Static Word Embeddings

Lukas Mielczarek
lukas.mielczarek@hhu.de

Linbo Zhang
linbo.zhang@hhu.de

Abstract

In this extended abstract we explain the moti-
vation for representing natural language words
with multi-dimensional vectors, explore a lin-
guistic intuition of word meaning and present
several methods for generating meaningful
word representations. These static word em-
beddings map a word to a fixed vector that can
be used in downstream applications. The meth-
ods we explore include traditional frequency-
based approaches (term-document matrices, co-
occurrence matrices, TF-IDF, PMI, LSA) as
well as newer neural network-based methods
(word2vec, FastText, GloVe). Finally, we dis-
cuss how to evaluate the quality of word em-
beddings generated with these methods.

1 Introduction

The starting point of our journey is the following
question: How to represent a natural language word
for use in machine learning algorithms? Of course,
as one often does for discrete categorical features,
one can assign each word a unique number and
use a one-hot-encoding. An encoding for the word
with ID 4 would then be a vector of length |V | for a
vocabulary V with a one at position 4 and all other
entries filled with zeros.

This, however, comes with two problems: (1) the
resulting vectors are very large for large vocabulary
sizes and (2) they do not provide us with any useful
information about the words. A word is as close
to another word as it is to any other word in the
vocabulary [21].

One-hot embeddings
Strengths

Easy to generate

Weaknesses

Sparse

High-dimensional

No relationships
between vectors

1.1 Word Meaning
Instead, when we humans think about words, we
associate them with their meaning. Thus, we would
like to quantify this meaning somehow to generate
word embeddings. The distributional hypothesis
tells us that words that occur in similar contexts
tend to have similar meanings [9]. Let us take a
look at the following example [12]:

1. Ongchoi is delicious sauteed with garlic.

2. Ongchoi is superb over rice.

3. ...ongchoi leaves with salty sauces...

Even if you do not know what ongchoi is, since
words like spinach, chard and collard greens also
occur with rice, garlic, delicious and salty in
speech and text, you can infer that ongchoi is a
leafy green similar to other leafy greens.1

We can leverage this intuition to represent a word
by observing word distributions in a text corpus and
constructing a static word embedding for each word
in our vocabulary. We want these word embedding
to fulfil the following criteria:

1. Synonyms should have very similar embed-
dings.

2. Similar words should have similar embed-
dings.

3. Words that are not similar should have very
different embeddings.

Note, however, that there are other types of relat-
edness besides similarity. For instance, the words
coffee and cup are not similar but still related [12].
The words man and woman are similar to a large
extent (both are humans) but they differ in one fea-
ture: natural gender. They are so-called antonyms

1Indeed, ongchoi is the Cantonese term for Ipomoea aquat-
ica, commonly known as water spinach [12].

1

man
woman

king
queen

Figure 1: The difference between the embeddings for
man and woman is expected to be the same as the differ-
ence between king and queen.

[12]. In our representation space a type of relation
should be expressed similarly (i.e. by a similar
movement in space) across word pairs, as is visu-
alised in Figure 1.

2 Sparse Frequency-based Methods

In the following, we will present several frequency-
based methods that can be used to create word-
embeddings. All of them have in common that they
involve observing word occurrences in texts.

Sparse Frequency-based Methods
Strengths

Easy to implement

Easy to understand

Weaknesses

Sparse

High-dimensional

2.1 Term-Document Matrix

For a selection of words V and a selection of doc-
uments D one can record how often each word
appears within each document. This gives rise to
a |V | × |D| matrix where the rows can be used as
static vectors to characterise a word.

2.2 Co-occurrence Counts

Alternatively, one can count how often two words
appear together within some pre-defined distance
in a document, producing a |V |×|V | co-occurrence
matrix. The entries of the matrix reflect word as-
sociation strengths. Again, a row can be used to
represent the corresponding word.

2.3 Term Frequency-Inverse Document
Frequency

The Term Frequency-Inverse Document Frequency
(TF-IDF) method was developed in the context of
information retrieval [19]. It is a statistical mea-
sure used to evaluate the importance of a word in
the context of a document within a collection of
documents.

Let TF (t, d) be the term frequency measuring
how often a term t appears in a document d:

TF (t, d) =
Number of times t appears in d

Total number of terms in d
(1)

Let IDF (t,D) be the inverse document fre-
quency which measures the commonness of a term
t across all documents in a corpus D:

IDF (t,D) = log(
Number of documents in D

Number of documents with t
)

(2)
Finally, TF-IDF is defined as follows:

TF -IDF (t, d,D) = TF (t, d) · IDF (t,D) (3)

Now, for a collection of terms and a collection of
documents, one can construct a matrix of TF-IDF
values. For each word, one can retrieve a sparse
vector (row) that characterises it.

2.4 Pointwise (Positive) Mutual Information

Pointwise Mutual information (PMI) measures
word associations beyond simple co-occurrence.
PMI for a target word w and a context word c is
defined as follows [5]:

PMI(w, c) = log2
P (w, c)

P (w)P (c)
(4)

Generally, one adjusts PMI to ignore negative
values, focusing only on positive associations [5]:

PPMI(w, c) = max(PMI(w, c), 0) (5)

One can construct a PMI matrix that contains
the PMI values for all pairs of word and context
word. Again, a row of this matrix can be used to
represent a word.

3 Introducing Dense Embeddings

The methods described so far produce sparse and
high-dimensional embeddings, i.e. vectors with a
lot of zeros as entries. This is not optimal for many
applications and relates to the phenomenon known
as the curse of dimensionality [1]. Instead, one can
embed words in a lower dimensional space of 50-
1000 dimensions instead of |V | for a vocabulary
V [11]. Dense embeddings work better in many
NLP tasks than sparse vectors for several reasons:
(1) one needs to learn fewer weights and (2) they
prevent overfitting [11].

2

3.1 Latent Semantic Analysis
Latent semantic analysis (LSA) analyses the rela-
tionship between a set of documents and the terms
they contain [6]. Singular value decomposition
(SVD) [8] is used to factorise a term-document
matrix into several components that allow to esti-
mate the latent semantic structure in the data and
to remove the noise:

A = UΣV T (6)

with

• A: term-document matrix

• U : term-concept matrix

• Σ: diagonal matrix containing singular values
which indicate the importance of each concept

• V : document-concept matrix transpose

The matrix U is generally used for word embed-
dings. This step produces dense representations
out of sparse term-document matrices and helps to
focus on the most significant underlying patterns
in the data [6].

3.2 Cosine Similarity
Dense word embeddings make it possible to define
a meaningful similarity measure between vectors
a and b in the range [0, 1] where θ is the angle
between the vectors:

cos(θ) =
a · b

|a| · |b|
=

∑n
i=1 aibi√∑n

i=1 a
2
i

√∑n
i=1 b

2
i

(7)

4 Word2vec

The next three sections will deal with neural
network-based methods for generating dense word
embeddings. Word2vec is the first such method,
developed in 2013 by Mikolov et al. [17]. It uses a
shallow neural network to learn from a large text
corpus.

Instead of counting word co-occurrences, the
idea is to learn word vectors as parameters of a pre-
diction task. The word2vec library offers two dif-
ferent context representations: skip-gram and con-
tinuous bag of words (CBOW) as well as two dif-
ferent optimisation objectives: negative sampling
and hierarchical softmax. In the following, we will
explain both skip-gram and CBOW combined with
the negative sampling objective.

Word2vec
Strengths

Simple task: binary
classification

Simple architecture

Fast computation

Weaknesses

Fixed vocabulary
size

Ignores internal
structure of words

4.1 Skip-gram with Negative Sampling
(SGNS)

The idea of skip-gram is to train a classifier on the
binary prediction class ’Is word c likely to show
up near the word w?’ in a self-supervised way, i.e.
using running text as the gold/correct answer. A
logistic regression classifier is trained to distinguish
positive and negative cases. Random words are
sampled from the lexicon and treated as negative
cases (negative sampling) to make the optimisation
computationally tractable. Finally, the classifier
weights are used as word embeddings [11].

Context words are chosen from a fixed context
window of size L around the focus word. Given a
tuple (w, c) of focus word w and context word c
the classifier will return the probability P (+|w, c)
that c occurs in the context window. The negative
case is defined as P (−|w, c) = 1− P (+|w, c).

Skip-gram relies on the assumption that similar-
ity predicts the likelihood of co-occurrence. Here,
similarity is defined as the unnormalised cosine
similarity mapped to the interval (0, 1) via the sig-
moid function:

P (+|w, c) = σ(c ·w) =
1

1 + exp(−cw)
(8)

Every context window contains multiple words.
The computation relies on two simplifying assump-
tions: (1) all context words are independent of each
other and (2) their position in the context window
does not matter:

P (+|w, c1:L) =
L∏
i=1

σ(ci ·w) (9)

4.1.1 Loss Function

The loss function for a pair of focus and context
words aims at maximising their co-occurrence prob-
ability and the probability of non-co-occurrence
with k negative sample words using stochastic gra-
dient descent (SGD) [8]:

3

LCE = − log

[
P (+|w, cpos)

k∏
i=1

P (−|w, cnegi)

]

= −

[
log σ(cpos ·w) +

k∑
i=1

log σ(−cnegi ·w)

]
(10)

The embedding weights are randomly initialised
and trained as part of the model. Random initial-
isation most often is done by either sampling the
weights uniformly with

W ∼ U(−a, a) (11)

for some a > 0 or from a normal distribution
with standard deviation σ.

W ∼ N (0, σ) (12)

Kocmi and Bojar [14] have found that initialisa-
tion works well irrespective of the distribution as
long as the standard deviation is smaller than 0.1.

Through training, the embeddings of word w end
up more similar to embeddings of words that occur
nearby and less similar to embeddings of words
that do not [11]. Thus, embeddings of words that
occur in similar contexts also end up similar.

Skip-gram actually learns two embeddings for
each word: one vector if the word is used as a target
and a second vector when using it as a context
word. This results in two matrices W and C, with
the rows being the word embeddings [21]. For
downstream applications one usually extracts wi

or adds together wi + ci.

4.2 Continuous Bag of Words

While the objective in skip-gram is to predict con-
text words from a central focus word, the contin-
uous bag of words (CBOW) setting features the
reverse task: predict the central word from its con-
text. To this end, one sums up the context word
embeddings to a context vector c =

∑k
i=1 ci [8].

The probability that w is the focus for the context c
is then P (+|w, c1:L) = σ(w·c). Negative samples
are taken for the focus word: P (−|wnegi , c1:L) =
1− P (+|wnegi , c1:L).

While skip-gram worked better in empirical
tests and can better represent less frequent words,
CBOW trains faster and can better represent more
frequent words [17].

4.3 Relationship with PMI
It turns out that count-based and neural-based meth-
ods are actually closely related. Assume that each
row of a word-context matrix M with dimensions
|VW | × |VC | corresponds to a word and each col-
umn corresponds to a context. Each cell contains
a quantity f(w, c) reflecting word-context associa-
tion strength. Levy and Goldberg [15] have shown
and empirically confirmed, that SGNS with k neg-
ative examples is implicitly factorising M since
the objective is minimised if Mi,j = wi · cj =
PMI(wi, cj)− log k.

5 FastText

FastText is an extension of word2vec and was de-
veloped in 2017 by Bojanowski et al. [2]. The mo-
tivation of FastText is to create representations for
out-of-vocabulary (OOV) words and to solve the
problem of word sparsity using a subword model.
FastText is remarkable since it provides word em-
beddings for 157 languages through a unified inter-
face.

FastText
Strengths

Better performance
on syntactic word
analogy than
word2vec [3]

Better performance
on rare words

Better performance
on OOV words [3]

Weaknesses

Worse performance
on semantic analogy
than word2vec [3]

Slower to train than
word2vec [3]

5.1 Infrequent Words and Synthesis
According to Zipf’s law, the frequency of a word
is inverse proportional to its rank when sorting the
words by frequency [22], i.e.

word frequency ∝ 1

word rank
(13)

This has the consequence that most words are
infrequent and thus, rarely seen during training.

The problem is even more pressing for languages
that exhibit a high degree of synthesis, i.e. contain
a lot of morphemes per word. Morphemes are the
meaningful subcomponents in words. For the word
dogs, the morphemes would be dog and s, express-
ing the plural. Languages such as Turkish com-
monly concatenate several grammatical markers

4

onto words, leading to one word having numerous
different forms, leading to observational sparcity.

5.2 Subword Model
The approach to deal with rare and unknown words
introduced by FastText is to use a subword model:
each word is represented as the sum of embeddings
for its n-grams and a special embedding for the
word itself [12]. The n-grams of a string are all sub-
strings of length n. This allows the model to iden-
tify morphological units and character sequences
with meaning shared across the vocabulary.

5.2.1 Training Objective
FastText uses SGNS. Let Gw denote the set of n-
grams that occur in w as well as w itself. Let zg be
the embedding for a g ∈ Gw. Define

P (+|w, c) = σ(c ·w) = σ(c ·
∑
g∈Gw

zg). (14)

The subword-level embeddings are not used for
context words. These are encoded with standard
word embeddings. The training procedure and ob-
jective stay the same as with NGNS.

6 GloVe

The Global Vectors for Word Representation
(GloVe) method was developed by Pennington et al.
[18]. It explicitly constructs a word-context matrix
by collecting word co-occurrences and then opti-
mises word and context embeddings to serve as a
factorisation of the co-occurrence matrix.

GloVe
Strengths

Fast training: Only
requires a single
pass through the
corpus to collect
co-occurrences

Can leverage large
amounts of data
better than
word2vec [18]

Performs better than
word2vec on word
analogy [18]

Performs better than
LSA [18]

Weaknesses

Co-occurrence
matrix of words
needs a lot of
memory for storage
[3]

Fixed vocabulary
size [3]

Ignores internal
structure of words

The co-occurrences are collected in a context-
window of 10 preceding and 10 following words.
The counts are weighted using the inverse distance
d−1 between focus and context word in order to
give less weight to distant context words [18].

Then, word and context vectors w, c are trained,
attempting to satisfy

log#(w, c) = w · c+ b[w] + b[c] (15)

where b[w] and b[c] are word- and context-
specific biases [8] and log#(w, c) is an entry in the
word-context matrix. To produce the final embed-
dings for downstream applications, sum the vectors
wi + ci [8]. One can show that if b[w] = log#(w)
and b[c] = log#(c) then the objective is similar
to factorising the PMI matrix shifted by log(|D|)
with |D| being the length of the document [8]:

w · c = PMI(w, c)− log |D| (16)

However, in GloVe the bias terms are learned as
part of the model and not fixed to allow for more
freedom.

6.1 Training Objective
The training objective is optimised using weighted
least-squares loss. The loss function is defined as
follows [18]:

J =
V∑

i,j=1

f(#(w, c))(wi · cj + b[wi] + b[wj]

− log#(w, c))2

(17)
The weighting function maps a co-occurrence to

a value in the interval [0, 1] and cuts off at some
height to prevent learning only from very common
word pairs:

f(x) =

{
(x/xmax)

α, if x < xmax,

1, otherwise.
(18)

The authors suggest values of α = 3/4 and
xmax = 100 [18].

7 Evaluation

There are two main methods for evaluating word
embeddings. Extrinsic evaluation is done by ob-
serving the performance in downstream NLP tasks
like parsing or sentiment detection when using em-
bedding vectors. Intrinsic evaluation methods are
used to directly check for desirable properties in
the vectors.

5

7.1 Intrinsic Evaluation
In the following, we will present several methods
for evaluating word embeddings intrinsically.

7.1.1 Similarity
In order to check whether word embeddings have
desired characteristics with respect to their pairwise
similarity, one can check the correlation between
embedding (cosine) similarities and similarity rat-
ings assigned by humans. To this end, one can use
pre-existing datasets:

• WordSim-353: similarity and relatedness
scores from 0 to 10 for 353 noun pairs [7]

• SimLex-999: similarities for 999 noun-noun,
verb-verb and adjective-adjective pairs [10]

• TOEFL dataset: 80 questions for synonyms
with a target word and four choices [20]

Finally, one can use Spearman’s rank correlation
to check how well the relationship of human and
predicted similarity can be described using a mono-
tonic function. Possible issues arise from the fact
that it is quite hard for humans to assess word simi-
larity on a one dimensional scale. Furthermore, the
notion of similarity is subjective and often seems
to be confused with relatedness [4].

7.1.2 Word Analogy
The second common intrinsic evaluation method
is to test performance on an analogy task (cf. Fig-
ure 1). Word analogy features questions of the
following type [11]:

a is to b as a∗ is to ___?

abbreviated to the short form:

a:b::a∗:b∗ find b∗

The algorithm is given the vectors for a, b and a∗
and must find b∗. We expect the word embeddings
to capture relational meaning and thus b∗ being
closest to the vector b− a+ a∗ [11]:

b̂∗ = argminx distance(x,b− a+ a∗) (19)

Finally, one can use accuracy as a metric and de-
termine what proportion of predictions correspond
to the correct word vectors.

Possible types of relation include morphology
(e.g. city:cities::child:children), lexicographic rela-
tions (e.g. leg:table::spout:teapot) and encyclope-
dic relations (e.g. Beijing:China::Dublin:Ireland)

[11]. Datasets that that contain such quadruples for
testing word embeddings include:

• SemEval-2012 Task 2 dataset of 79 different
relations [13]

• Google analogy test set [17]

Problems can arise when the difference between
a and a∗ is small and b and b∗ are very close since
in such cases the correct answer might be returned
even though the offsets are different [16].

8 Conclusion

In the preceding sections we have presented and
explained several known and established methods
for generating static word embeddings. They are
a powerful tool for representing natural language
words in downstream NLP applications like syn-
tactic parsing and sentiment analysis. Furthermore,
they can be used directly to investigate relation-
ships between words. The methods presented are
overall easy to interpret, implement and train. A
brief comparison of their strengths and weaknesses
can be found in Table 1.

A central weak point for all of the approaches
above is their shortcoming with respect to ambigui-
ties. Ambiguous words are words that have more
than one meaning. Take for instance the word bank
in the sentences I worked at a bank. and She sat
near the river bank. Using static word embeddings,
the word bank would receive the same representa-
tion in both sentences despite referring to a finan-
cial institution in the first and to the edge of the
river in the second. To solve this problem, contex-
tualised embeddings were developed which take
into account the sentential context for generating a
representation for a word [8].

References
[1] R. Bellman, Rand Corporation, and Karreman Math-

ematics Research Collection. 1957. Dynamic Pro-
gramming. Rand Corporation research study. Prince-
ton University Press.

[2] Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2017. Enriching word vectors
with subword information. Transactions of the Asso-
ciation for Computational Linguistics, 5:135–146.

[3] Amit Chaudhary. 2020. A visual guide to fasttext
word embeddings. https://amitness.com/2020/
06/fasttext-embeddings/. Accessed: 2024-07-
04.

6

https://books.google.de/books?id=wdtoPwAACAAJ
https://books.google.de/books?id=wdtoPwAACAAJ
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://amitness.com/2020/06/fasttext-embeddings/
https://amitness.com/2020/06/fasttext-embeddings/

Sparse count-based LSA with SVD word2vec GloVe FastText
dense – + + + +

Deals with unseen words – – – – +
Leverages subword information – – – - +

Easy interpretation + – – – –
Strong for semantic analogy – – + –
Strong for syntactic analogy – – – +

Does not introduce randomness + + – – –

Table 1: Strengths and weaknesses of the methods discussed in the previous sections.

[4] Billy Chiu, Anna Korhonen, and Sampo Pyysalo.
2016. Intrinsic evaluation of word vectors fails to
predict extrinsic performance. In Proceedings of
the 1st Workshop on Evaluating Vector-Space Rep-
resentations for NLP, pages 1–6, Berlin, Germany.
Association for Computational Linguistics.

[5] Kenneth Ward Church and Patrick Hanks. 1989.
Word association norms, mutual information, and
lexicography. In 27th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 76–83,
Vancouver, British Columbia, Canada. Association
for Computational Linguistics.

[6] Scott C. Deerwester, Susan T. Dumais, George W.
Furnas, Richard A. Harshman, Thomas K. Landauer,
Karen E. Lochbaum, and Lynn A. Streeter. 1978.
Computer information retrieval using latent semantic
structure. US Patent US4839853A.

[7] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2002. Placing search in context: the concept
revisited. ACM Trans. Inf. Syst., 20(1):116–131.

[8] Yoav Goldberg. 2017. Neural Network Methods
for Natural Language Processing. Springer Cham,
Basel, Switzerland. ISBN: 978-3-031-01037-8.

[9] Zellig S. Harris. 1954. Distributional structure. In
WORD, volume 10, pages 146–162. International Lin-
guistic Association (ILA).

[10] Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
SimLex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

[11] Dan Jurafsky and James H. Martin. 2024. Speech
and language processing. https://web.stanford.
edu/~jurafsky/slp3/. 3rd ed. draft.

[12] Dan Jurafsky and James H. Martin. 2024. Speech
and language processing, slides. https://web.
stanford.edu/~jurafsky/slp3/. 3rd ed. draft.

[13] David Jurgens, Saif Mohammad, Peter Turney, and
Keith Holyoak. 2012. SemEval-2012 task 2: Measur-
ing degrees of relational similarity. In *SEM 2012:
The First Joint Conference on Lexical and Compu-
tational Semantics – Volume 1: Proceedings of the
main conference and the shared task, and Volume
2: Proceedings of the Sixth International Workshop

on Semantic Evaluation (SemEval 2012), pages 356–
364, Montréal, Canada. Association for Computa-
tional Linguistics.

[14] Tom Kocmi and Ondřej Bojar. 2017. An explo-
ration of word embedding initialization in deep-
learning tasks. In Proceedings of the 14th Interna-
tional Conference on Natural Language Processing
(ICON-2017), pages 56–64, Kolkata, India. NLP As-
sociation of India.

[15] Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Ad-
vances in Neural Information Processing Systems,
volume 27. Curran Associates, Inc.

[16] Tal Linzen. 2016. Issues in evaluating semantic
spaces using word analogies. In Proceedings of the
1st Workshop on Evaluating Vector-Space Represen-
tations for NLP, pages 13–18, Berlin, Germany. As-
sociation for Computational Linguistics.

[17] Tomas Mikolov, Kai Chen, Greg Corrado, and
Jeffrey Dean. 2013. Efficient estimation of
word representations in vector space. Preprint,
arXiv:1301.3781.

[18] Jeffrey Pennington, Richard Socher, and Christo-
pher Manning. 2014. GloVe: Global vectors for
word representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

[19] KAREN SPARCK JONES. 1972. A statistical in-
terpretation of term specificity and its application in
retrieval. Journal of Documentation, 28(1):11–21.

[20] Bo-Hsiang Tseng, Sheng-Syun Shen, Hung-Yi
Lee, and Lin-Shan Lee. 2016. Towards machine
comprehension of spoken content: Initial toefl lis-
tening comprehension test by machine. Preprint,
arXiv:1608.06378.

[21] Lena Voita. 2020. NLP course for you, word em-
beddings lecture slides. Yandex School of Data Anal-
ysis. https://github.com/yandexdataschool/
nlp_course/tree/2020/week01_embeddings.
Accessed: 2024-07-04.

[22] George Kingsley Zipf. 1936. The Psycho-Biology
of Language - An Introdution to Dynamic Philology.
Houghton-Mifflin, Boston, Massachusetts.

7

https://doi.org/10.18653/v1/W16-2501
https://doi.org/10.18653/v1/W16-2501
https://doi.org/10.3115/981623.981633
https://doi.org/10.3115/981623.981633
https://patents.google.com/patent/US4839853A/en
https://patents.google.com/patent/US4839853A/en
https://doi.org/10.1145/503104.503110
https://doi.org/10.1145/503104.503110
https://doi.org/10.1007/978-3-031-02165-7
https://doi.org/10.1007/978-3-031-02165-7
https://www.tandfonline.com/doi/pdf/10.1080/00437956.1954.11659520
https://doi.org/10.1162/COLI_a_00237
https://doi.org/10.1162/COLI_a_00237
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://aclanthology.org/S12-1047
https://aclanthology.org/S12-1047
https://aclanthology.org/W17-7508
https://aclanthology.org/W17-7508
https://aclanthology.org/W17-7508
https://proceedings.neurips.cc/paper_files/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf
https://doi.org/10.18653/v1/W16-2503
https://doi.org/10.18653/v1/W16-2503
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1108/eb026526
https://doi.org/10.1108/eb026526
https://doi.org/10.1108/eb026526
https://arxiv.org/abs/1608.06378
https://arxiv.org/abs/1608.06378
https://arxiv.org/abs/1608.06378
https://github.com/yandexdataschool/nlp_course/tree/2020/week01_embeddings
https://github.com/yandexdataschool/nlp_course/tree/2020/week01_embeddings
https://mitpress.mit.edu/9780262740029/the-psycho-biology-of-language/
https://mitpress.mit.edu/9780262740029/the-psycho-biology-of-language/

	Introduction
	Word Meaning

	Sparse Frequency-based Methods
	Term-Document Matrix
	Co-occurrence Counts
	Term Frequency-Inverse Document Frequency
	Pointwise (Positive) Mutual Information

	Introducing Dense Embeddings
	Latent Semantic Analysis
	Cosine Similarity

	Word2vec
	Skip-gram with Negative Sampling (SGNS)
	Loss Function

	Continuous Bag of Words
	Relationship with PMI

	FastText
	Infrequent Words and Synthesis
	Subword Model
	Training Objective

	GloVe
	Training Objective

	Evaluation
	Intrinsic Evaluation
	Similarity
	Word Analogy

	Conclusion

