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Abstract

In this summary we explain the motivation for
the search for cognitively plausible parsing al-
gorithms and what it means for a parser to be
cognitively plausible. We briefly define the
formalism of Psycholinguistically Motivated
Tree-Adjoining Grammar, present a parsing
scheme for it and explain how to extract and
parse a probabilistic variant of the formalism,
summarising Demberg et al. (2013).

1 Motivation

Among the parsing algorithms studied in computa-
tional linguistics, not all are cognitively plausible.
Following Kallmeyer (2025), one might be inter-
ested in human-inspired language processing for
the reasons described in the following.

1.1 Understanding Humans
Incorporating findings about human cognition in
parsers might enable in silico studies of human
language processing. This can help researchers
understand cognitive difficulties that humans have
when processing certain phrases and may in turn
contribute to our understanding of the human cog-
nitive system.

1.2 Downstream Applications
Certain types of tasks might be solved better by
human-inspired parsers. These might be tasks that
require a profound level of language comprehen-
sion, tasks that necessitate dealing with incomplete
sentences and tasks that encompass the generation
or assessment of naturally sounding text.

2 Cognitive Plausibility

According to Demberg et al. (2013), the relevant
properties a cognitively plausible parser should
posses are prediction, incrementality and connect-
edness. In the following, I will outline these prop-
erties in more detail.

2.1 Prediction

Several studies have shown that humans make
predictions about following material while com-
prehending a sentence. Altmann and Kamide
(1999) have found that humans predict upcoming
tokens. There is also evidence showing that up-
coming structure like subcategorisation frames of
verbs (Arai and Keller, 2013) and the grammati-
cal forms of an upcoming referent (Gotzner and
Spalek, 2022) are predicted.

2.2 Incrementality

Research suggests that humans process words in
a sentence one by one, following their surface or-
der, and that they do not wait until the end of the
sentence before constructing a syntactic represen-
tation for it (Demberg et al., 2013). Experimental
results from Tanenhaus et al. (1995) and Konieczny
(2000) show that encountering a new word triggers
an update of this intermediate representation.

2.3 Connectedness

Connectedness refers to the assumption that all in-
put words are integrated into the same connected
syntactic representation in the human processing
device. Demberg et al. (2013) state that this holds
during incremental processing: While processing
a sentence, humans do not maintain unconnected
fragments in their mind. Evidence for connected-
ness is found in Sturt and Lombardo (2005).

3 PLTAG

Psycholinguistically Motivated Tree-Adjoining
Grammar (Demberg and Keller, 2008, PLTAG)
is based on the mildly context-sensitive Tree-
Adjoining Grammar formalism (Joshi et al., 1975;
Joshi and Schabes, 1997, TAG). TAG is thought
to be powerful enough for modelling natural
languages while maintaining efficient parsibility
(Joshi, 1985). However, as will become apparent
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Figure 1: Elementary trees and derivation for the sen-
tence "Anna will schlafen" (Anna wants to sleep) in
TAG.

in the next section, TAG in its standard form does
not respect the cognitive plausibility assumptions
we have just established.

3.1 TAG is not enough

As can be seen in Figure 1, the order of derivation
in regular TAG does not necessarily correspond
to word order in a sentence: Either the tree for
’Anna’ is substituted into ’schlafen’ after process-
ing ’will’ but before integrating it into the deriva-
tion, breaking connectedness, or before process-
ing ’will’, which contradicts with incrementality.
Somehow, we want ’Anna’ and ’will’ to connect.

3.2 Prediction and Verification

In order to allow incremental processing of a con-
nected structure, Demberg et al. (2013) enrich TAG
with rules for predicting parts of unanchored trees,
so called prediction trees. This requires the follow-
ing modifications:

Nodes now consist of a top and a bottom half.
Roots only have a bottom part while substitution
nodes and foot nodes only have top halves.

Indices in prediction trees show which predic-
tion they stem from. A subscript indicates a bottom
half and a superscript indicates a top half. When in-
stantiating a prediction tree, all its markers receive
a new index k not present yet in the tree. We dis-
tinguish between canonical elementary trees and
predictive elementary trees.

Verification of predicted structures must at some
point occur by matching with actual elementary
trees. The indices disappear at this step.

Substitution and adjunction can be used to in-
tegrate a new tree into the derivation tree ("down"),
as known from standard TAG, or to integrate the
tree into a new tree ("up").

3.2.1 Verification
In PLTAG, it is necessary to confirm predicted
nodes using a verification operation by observing
some canonical elementary tree τverif anchored by

a succeeding word. Parts of τverif must match all
node halves that were introduced by some predic-
tive tree, identified by an index i. Possible new
structure in τverif is added to the derived tree.
The conditions for matching are described more
rigorously in the following, based on Kallmeyer
(2025)’s summary of Demberg et al. (2013).

Let l be a mapping from node half to label, t a
mapping from a node half to its type (top/bottom),
◁ the tree dominance relation and ≺ precedence.

Definition 3.1 (Correspondence). A mapping f of
node halves with index i in a derived tree τ to node
halves in the verification tree τverif is called corre-
spondence if it preserves l, t, ◁, ≺ and is injective.

Not all correspondences are useful for PLTAG.
We only use admissible correspondences.

Definition 3.2 (Admissible Correspondence). A
correspondence f is called admissible if it covers a
contiguous subtree in the derived tree, includes its
first k leaves for some k and includes its root.

Definition 3.3 (Verification). We can apply a ver-
ification for an index i given a derived tree τ and
a verification tree τverif if there is an admissible
correspondence f from the node halves marked
with i in τ to node halves in τverif .

If for some node u in τverif , which matches a
bottom node half h in τ , only the first k children’s
top node halves are matched, then the subtrees
rooted in the remaining children k+1, ... are added
as children of h. The index i is removed from all
node halves in τ .

Since a derivation in PLTAG is incremental, the
first i leaves of the derived tree are labelled with
w1, ..., wi for some i after a sequence of derivation
steps. These derived trees are called prefix trees.

Definition 3.4 (Complete Derivation). A deriva-
tion for a sentence w1, ..., wn is called complete
if we have scanned all leaves, the prefix tree con-
tains no remaining substitution nodes, foot nodes
or prediction markers and the label of its root is S.

4 Parsing PLTAG

The parsing scheme proposed by Demberg et al.
(2013) is centered around the notion of a fringe. In
Figure 2 you can find an example parse.

4.1 Fringes
The area of a prefix tree where substitions and ad-
junctions can happen is constrained by incremen-
tality to the current fringe (cf. Figure 2).



Definition 4.1 (Node Positions). For a node v we
call ⟨v a left position and v⟩ a right position.1

Definition 4.2 (Tree Traversal of Node Positions).
npos(τ) denotes a depth-first, left-to-right traversal
of node positions in the tree τ .

Definition 4.3 (Fringe). A fringe is a minimal sub-
sequence of node positions from npos(τ) that be-
gins to the left of the root or right of a leaf and ends
to the right of the root or to the left of a leaf.

4.2 Deduction Rules

Definition 4.4 (Items). The deduction items consist
of a position i in the input sequence and npos(τ)
for a prefix tree τ . We use • in npos(τ) to indicate
the start of the current fringe.2

The deduction rules are defined with the goal of
satisfying the incrementality condition. No new
lexical items or substitution nodes can be inserted
into the already scanned area preceding the current
fringe. Init lets us start with some canonical ele-
mentary tree from the grammar and index 0. We
can apply Scan if the curent fringe ends with a leaf
node that is labelled with the next input word. As
a result, the index is incremented by one. Subst-
Down can be applied if the current fringe ends with
a substitution node. We select an elementary tree
and substitute it into that node. SubstUp results in
the derivation tree to be substituted into some new
elementary tree. This tree is not allowed to have
branches left of the spine so that no new material
is inserted before the current fringe.

For adjunction, there are two down operations,
AdjDownR and AdjDownL because auxiliary trees
are assumed to add only nodes to the right of the
spine or only to the left of it. Using AdjDownR,
one can only adjoin at nodes whose right positions
immediately follow the start of the current fringe.
AdjDownL can only be applied to nodes whose left
positions are part of the current fringe. Further-
more, AdjUp can be applied if the derivation tree is
an auxiliary tree to adjoin it to a node in a new tree
that has no left branches on its path to the root.

Lastly, Verify can be applied to match prediction
tree indices to a new canonical elementary tree
using a verification. New unmatched material is
added to the derivation tree.

1We opted for the use of ⟨ and ⟩ instead of • as in
Kallmeyer (2025) or + and − in Demberg et al. (2013) for
reasons of readability.

2The position of • is uniquely determined by i: i = 0
indicates the first fringe and all other values indicate the fringe
starting at the ith leaf’s right position.
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Figure 2: Parsing "Anna will schlafen" (Anna wants to
sleep) in PLTAG. The current fringe is marked with ⟨, ⟩.

5 Probabilistic PLTAG

We would like to define a probability distribution
over PLTAG derivations to allow for efficient pars-
ing. Naturally, we want the probability of a deriva-
tion to be the product of probabilities of individual
derivation steps. Following Demberg et al. (2013),
we define a probability model for this. For each
of the following probability functions PX(τe|...),
it holds that

∑
τe
PX(τe|...) = 1.

With PI(τe) we denote the probability that
a derivation starts with the elementary tree τe.
PS(τe|τd, ue, ud) is the probability of adding τe
by substitution to the derived tree τd, using nodes
ue in τe and ud in τd.3 If ue is a root node, τe is
substitued into τd at node ud. If ud is a root, then
τd is substituted into τe at substitution node ue.

PV (τv|τp, up) denotes the probability of hav-
ing prediction tree τp, that was added using node
up, verified by a canonical tree τv. Finally,
PA(τe|τd, ue, ud) gives us the probability of com-
bining τe and τd using adjunction at nodes ue and
ud. We also define PA(NONE|τd, ud) the probabil-
ity of adjoining nothing to ud. Therefore:∑

τe

PA(τe|τd, ue, ud) + PA(NONE|τd, ud) = 1

(1)
3Since ue is a node in τe and the probability therefore

is trivially 0 for all other elementary trees, the intention of
the original notation of Demberg et al. (2013) is unclear. It
appears to be more sensible to define PS(τe, ue|τd, ud) for
tuples of elementary tree τe and root/integration site ue in τe.
The same holds for PA.



Demberg et al. (2013) make several independence
assumptions to make approximating these probabil-
ities feasible and to omit the problem of data spar-
sity. One idea is to predict unanchored versions of
elementary trees to reduce the large number of pos-
sible items. For this, we define the head of a node
to be the label of the daughter that is its syntactic
head. Furthermore unlex(τe) yields τe without its
anchor and anchor(τe) yields the anchor of τe.

Now, anchoring is simply factored out. For sub-
stitution and adjunction we have:

P (τe|τd, ue, ud) = P (unlex(τe)|τd, ue, ud)
P (anchor(τe)|unlex(τe), head(ur)) (2)

where ur is the root of the tree that introduced ud.
For verification we have:

PV (τv|τp, up) = P (unlex(τv)|τp)
P (anchor(τv)|unlex(τv), head(up)) (3)

where up is the node at which prediction tree τp
was integrated into the already derived tree.

5.1 Supertagging
The introduction of prediction trees into TAG leads
to a practical problem when parsing: Given a cur-
rent fringe, there is a large number of possible pre-
diction trees one could add and trying all of them
is not feasible. To mitigate this problem, Dem-
berg and Keller (2008) score prediction trees based
on the current fringe fd and the POS tag ti+1 of
the next word, calling this technique supertagging.
Then, they only use the best-scored prediction trees.
With factorisation this equates to:∑

pred. tree τp

P (τp|fd, ti+1) = 1 (4)

P (τp|fd, ti+1) = P (τp|fp, X)P (fp, X|fd, ti+1)
(5)

where fp is the first fringe in τp and X is the leaf
category of the spine in τp.

5.2 Parsing
When parsing, Demberg et al. (2013) apply oper-
ations incrementally. They start with weight 0 for
the parse items. Then, for each rule application,
they add the natural logarithm of the probability of
the operation to the item weight.

Furthermore, the authors use beam search. This
allows for multiple parsing options to be explored
which can help in cases of syntactic ambiguities.

5.3 Estimating Probabilities

For estimating the probabilities defined above,
Demberg et al. (2013) use maximum likelihood
estimation via counts in a treebank and smoothing.
The large space of possible derived prefix trees τd
has the consequence that most are unseen. There-
fore, instead of considering τd as a whole, one can
focus on a range of features of τd.

In order to observe TAG tree counts in a treebank,
Demberg et al. (2013) first extract a standard LTAG
from it based on top-down grammar extraction pro-
cedures. Then they gain unlexicalised prediction
trees from the lexicalised elementary trees. They
only extract prediction trees that are identical to
some canonical elementary tree, with the excep-
tion of subtrees below and to the right of nodes on
the spine. Furthermore, they make the following
decisions to reduce the number of trees:

• No substitution nodes to the right of the spine
are predicted.

• No unary daughters on the spine are predicted.

• Lexical co-anchors like ’either’-’or’ are only
predicted in rare cases.

In order to extract the required prediction trees
for a decomposed treebank tree, one can compute
connection paths between subsequent tokens (Dem-
berg et al., 2013). These are defined as the minimal
path between two leaves. Now, following a connec-
tion path from left to right, one adds a prediction
tree when one encounters a node that is not part
of the prefix tree or the elementary tree of the sec-
ond token. This prediction tree should contain that
node and all other noes on the path coming from
the same elementary tree.

However, this strategy can lead to several predic-
tion trees to add in a row. We want to restrict the
number of prediction trees to add between obser-
vations of canonical trees to one for computational
reasons. Therefore, Demberg et al. (2013) compile
combinations of prediction trees for such cases and
add them to the grammar.

On the Penn Treebank (PTB), at most five predic-
tion trees had to be precombined (Demberg et al.,
2013). In total, the number of elementary trees
based on the PTB is 6700.
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